Adapting Similarity on the MagnaTagATune Database:

Effects of Model and Feature Choices

Daniel Wolff, Tillman Weyde

City University London

Department of Computing
daniel.wolff.1@soi.city.ac.uk, t.e.weyde@city.ac.uk

Introduction

- Music similarity measures:
 - Central in MIR: recommendation, analysis, indexing, ...
 - Important in musicology: repetition / variation, citations, categorisation into style / genre
- Goal: Learn human similarity judgements from a human computation game.
- Compare two modelling approaches on the same similarity data.
 - Facet-based similarity measures:
 Stober and Nürnberger 2011 (ST11)
 - Mahalanobis Metrics:
 Wolff and Weyde 2011 (W11)
- Evaluate applicability of different algorithms and feature types

Structure

- Introduction
- Data
 - The MagnaTagATune Dataset
 - Similarity data
- Similarity Models: ST11 / W11
- Features: ST11 / W11
- Experiments
 - Results
- Conclusion

Data

Dataset: MagnaTagATune

- Subset of 1019 Song excerpts from the Magnatune label
 - about 30 seconds long, most prominent genres:
 - "electronica", "classical", "world" and "rock"

 Similarity judgements from the human computation game "TagATune"

- Tag features from "TagATune"
- Audio features:
 - Precomputed by

Similarity data

Law et al. 2009

Similarity data

- Data collected via bonus round in TagATune game
 - Users aim to agree on outlying (most dissimilar)
 clip out of three
 - 533 triplet histograms, 1019 clips
 - On average 14 votes per histogram
 - Some triplets reappear as permutation
 - (186 appear twice)

Most triplets contain 2 or 3 genres

Similarity Constraints

- Model similarity through distance measure
 - d is prospective distance measure
 - low distance ⇔ high similarity
- For each outlier vote C, given a triplet (A, B, C):
 - Derive similarity constraints
 - (A, B, C), C being the outlier implies
 - -d(A, B) < d(A, C) AND d(A, B) < d(B, C)

Similarity Graph (Stober11)

- Build a similarity multigraph (McFee et al. 2009)
 - Vertices: pairs of clips { (A, B), (A, C) ...}
 - Directed edges: similarity constraints
 - \blacksquare (A, B) => (A, C) \Leftrightarrow d(A, B) < d(A, C)
 - \blacksquare (A, B) => (B, \blacksquare) \Leftrightarrow d(A, B) < d(B, \blacksquare)

Filter Similarity Data

- Graph is filtered to remove any inconsistencies
 - Remove cycles of length 2
 - Balance contradictory edges
 - Equal connections disappear

- Designed to remove cycles of greater length
- Randomised process returns acyclic subgraph
 - 674 unique constraints remain
- Actually removes more edges than necessary
 - Future work (ISMIR2012)

Similarity Models

Similarity Models

- Goal: Learn / Model similarity votes
 - Find distance measure satisfying all constraints
 - Predict similarity votes on unknown data
- 2 approaches applied on MagnaTagATune:
 - W11: Mahalanobis Metrics
 - Metric Learning to Rank
 - ST11: Facet-based Distance
 - Quadratic optimisation
 - Linear SVM
 - Others

W11: Mahalanobis Metrics

- Generalised weighted Euclidean metrics,
 - Weight matrix W allows for transformations of the comparison space:
 - Rotations
 - Translations
 - Dilations

$$d_W(x,y) = \sqrt{(x-y)^T W(x-y)}$$

- with feature vectors $x,y \in R^N$
- pos. semidefinite $W \in \mathbb{R}^{N \times N}$ defines the metric
- W can be restricted to diagonal shape

W11: Metric Learning to Rank

- McFee and Lanckriet (2010): Metric Learning to Rank.
- Metric learning formulated as constrained regularisation
 - Structural SVM framework is used,
 - Optimisies Malalanobis distance measure
 - Constraints are defined by training rankings
 - A soft-margin approach allows some constraints to be violated in the final solution

ST11: Facet-based Distance

- Weighting of predefined facet distances
- Instead of directly weighting in feature space:
 - Assign specialised distance measure δ_{f_i} to each feature
 - Positive weights w_i determine a linear combination of individual distance results

$$d_w(A,B) = \sum_{i=1}^l w_i \delta_{f_i}(x_A, x_B)$$

(for clips A, B, features x_A , x_B)

ST11: Learning Facet Weights

- Various approaches have been compared (Stober and Nürnberger 2011)
- Compare the most successful ones:
 - LIBLINEAR
 - Learns a SVM which distinguishes between constraints
 (A, B) => (A, C) vs (A, C) => (A, B)
 - Produces some slightly nonnegative weights w_i
 - Popular toolbox can be downloaded online
 - Quadratic programming with slack
 - Their own solver with quadratic optimisation of squared slack values, returns non-negative w_i

Features

Acoustic Feature Data

- Extractor: The Echo Nest "Analyse" API
- Chroma & timbre features (segment-level, St11+W11)
- Aggregated to clip level:
 - ST11: Single mean and variance vectors per feature & clip
 - W11: 4 weighted cluster centroids per feature & clip
- Clip-level information (ST11, relevant only)
 - key, mode,
 - loudness, energy,
 - time signature, tempo, "danceability"

ST11: Tag Feature Data

- STOB11: TagATune tag annotations
 - 188 unique tags provided in the dataset.
 - distributed rather sparsely, combine several tags:
 - singular/plural forms,
 - spelling correction and
 - semantic similarity.
- Result: Vocabulary of 99 tags,
 - represented by binary values per clip

W11: Genre Features

- Genre information from the Magnatune label
 - Online catalogue annotates all Magnatune songs!
 - Small vocabulary: 44 genres for the whole set

■ Binary vector $\in \{0,1\}^{44}$ per clip (1 dimension per genre)

Facets, Features, Parameters

Features	Facets Stober 11	Param. Wolff 11 MLR	Param. Wolff11 DMLR
chroma	2	4 · 12	4 · 12 · 148
timbre	2	4 · 12	4 · 12 · 148
clip-level audio	7	/	/
tags	99	44	44 - 148
	110	148	21904

Experiments

Experimental Setup

- Generate 10 randomly extracted all constraints sets
 - using the methods from ST11
- Use different numbers of training constraints:
 - For each size, 5 training subsets are selected randomly (for each of 10 all constraints sets)
- Evaluate W11 training success on all constraints sets,
 - including the training data
- Results are compared to the numbers in ST11

Algorithms training performance

- MLR achieves 100% top performance (no training constr. violated)
 - variance shows dependency on sampling
- Quadratic programming slightly better than DMLR
- LIBLINEAR (130 violated) achieves best facet-based result
 - but includes negative facet distance weightings

Results: W11 Feature Types

- Baselines: unweighted Euclidean distances for feature types
- Combined features: Best results (fast and complete learning)
- Genre features: features fail at learning, worst baseline
- Acoustic features: slower learning but can learn all constraints, better performing baseline

Results: W11 Generalisation

- Combined features: Best results (20% violated)
- Acoustic features: continuous improvement, but lower in general
- Genre features: some early learning, then no impact
 - information still valuable in combined features

Conclusions

- Constraints from similarity votings contain generalisable information, which can be modelled using the tested methods.
 - MLR with full W matrix learns all constraints
 - Facet-based approaches outperform diagonal MLR
- Combined features outperform single-source features
 - Effectiveness of features is not necessarily reflected in unweighted Euclidean distance
 - Feature type strongly affects performance (training and generalisation)
 - Genre features too sparsely located in vector space

Future Work

- Submitted for ISMIR 2012: Systematic comparison of algorithms with common features and extended similarity data
- Currently testing
 - training with more elaborate features
- Coming soon
 - Gather similarity data with more context information
 - Comparison of user groups

Thank you