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zu entscheidenden Zeitpunkten dennoch nahe gestanden haben. Insbesondere bin ich den
Folgenden zum Dank verpflichtet:

Die gesamte Arbeitsgruppe von Michael Clausen, in der diese Diplomarbeit entstanden ist,
stand mir immer hilf- und lehrreich zur Seite. Hier gilt mein besonderer Dank Frank Kurth,
Rolf Bardeli und Christian Fremerey, welche mir auch über die Entstehung der Arbeit hinaus
in vieler Hinsicht geholfen haben.

Meiner Familie gilt ebenfalls ein besonderer Dank, da mich gerade die liebevolle und viel-
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Chapter 1

Introduction

Birds, though being quite common even in our biggest cities, are threatened by the impact of
mankind like many other animals. As the modern culture has become aware of its influence
on the surrounding ecological system, several measures are being elaborated to reduce the
adverse effects of growing cities and industrial parks. In order to provide a basis for a precise
and effective application of such measures, like the definition of nature protection areas, data
sets on the actual inhabitants of distinct geographic zones are of great importance.

For the case of songbirds, the usual approaches to the determination of the sizes of their
populations depend on the manpower available to the executive organisation. In Germany,
the DDA (Association of Avifaunists) conducts such a project by line mapping a subset
of 1000 watching sites [MSHRD05]. For each site, the actual observation is performed by
hobby ornithologists. Here, the gathered data is subject to the perception of the respective
observer: the hearing and visual capabilities as well as the expertise of each ornithologist
influences the actual number of detected birdsongs. Furthermore, the observers are limited
in their observation time.

Thus, in the past decade, as modern computers provide the means to analyse the grow-
ing data sets being collected at long-time acoustic recordings, the challenge to suspend or, in
some cases, to substitute the human ornithologist by a machine, has been faced. Although the
expertise of an ornithologist is usually not outperformed when handling a small set of acous-
tic data, computational methods provide powerful tools for the analysis of large databases.
For example, many software tools for bioacoustic audio analysis as XBAT[XBA], Avisoft
SaSLab[SAS] or DSProlog provide an automatic search for template excerpts being defined
by the users before. Thus, the scientist may check the reduced data set of found matches.
Recently, a query-by-example interface has been developed for the Animal Sound Archive in
Berlin [TSA], allowing the user to search for recordings containing animal sounds similar to
a provided query recording. Actually, the majority of recordings used for the evaluation of
the proposed methods were drawn from the above archive and a set of monitoring recordings
being provided in a cooperative project [FT07], respectively.

Embedded in this project, which has been founded by the German National Agency for Nature
Conservation, the techniques proposed in this work aim at providing tools for the automatic
detection of bird songs in real-world monitoring scenarios. Notably, most of the research
performed to this point is based on more or less clean recordings of animal sounds. Dealing
with a massively open source of acoustic data, featuring a wide spectrum of interfering noise
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10 CHAPTER 1. INTRODUCTION

as well as a less controlled set of species and individuals, this work focusses on robust feature
extraction methods. Thus, two sets of features are introduced: the first set concentrates
on a robust representation of the spectral, or tonal, characteristics of birdsongs. Exploiting
the periodic character of many birdsongs, the features in the second set robustly derive the
parameters of the typical element repetitions.
Furthermore, two detectors are presented envisaging a robust and generic recognition of two
bird species: the Chaffinch and Savi’s Warbler. The songs of both of the mentioned species
reveal a repetitive structure, providing a basis for the deployment of features analysing the
parameters of such repetitions. Both, the feature extraction routines and detectors, were
implemented in the MATLAB R© environment.
Besides the development of the previous detectors, the actual work will depict the scope
of applications of the introduced periodicity features on more general species recognition
systems. Additionally, an audio summarisation procedure is presented, condensing the bird-
like sounds in a record, virtually without having prior knowledge on the recorded species’
songs.

1.1 Related work

In an effort to concentrate the individual advances in the topic in focus, a first research
network for computational bioacoustic monitoring and analysis has been established. The
“International Expert Meeting on IT-Based Detection of Bioacoustical Patterns” was held
at the Isle of Vilm in 2007 in Germany (see [FBC08] for the proceedings), and a bioacoustic
monitoring mailing list has been set up [BML].
Although the previous discipline is rather young, most of the problems faced within the recog-
nition of bird sounds constitute typical pattern recognition problems. In fact, the detection
of a particular bird sound can be interpreted as the result of a classification procedure. A
distinct classification result is associated with the recognition of a bird’s voice, and the bird
is detected. Hence, several common pattern recognition methods have been applied to the
task of birdsong identification.
In particular, algorithms for speech recognition have proposed to be applicable on birdsongs:
Anderson et al. [ADM96] have proven the Dynamic Time Warping approach to be suitable for
the template-based detection of the songs of Indigo Bunting (Passerina cyanea) and the Zebra
Finch (Taeniopygia guttata) in clean recordings. Furthermore, Kogan et al. have compared
the previous results to the performance of hidden Markov models [KM98]. Here, a compound
of left-to-right HMM’s was used to analyse the recordings.
Both of the further procedures relay on manually extracted and segmented templates. In
his Masters thesis [Fag04], Fagerlund, member of the Finnish AveSound project, describes
a method to automatically derive a segmentation of birdsongs. Furthermore, a k-Means
classificator is used for the final recognition task. As most of the previously mentioned studies
were performed on spectral features, commonly used for the parametric representation of
harmonic acoustic signals, Selin, Turunen and Tanttu used a Wavelet Packet Decomposition to
extract a set of complementary parameters, permitting an improved description of inharmonic
and transient bird sounds [STT07].
Focussing on the highly repetitive sound of crickets, Schwenker et al. [SDK+03] used learnable
Neuronal Networks to adapt and classify the insects’ sounds, which have a great similarity to
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the songs of some birds of the Locustella family. Wavelets and Neuronal networks were also
used for bird voice recognition in [Pos02].

A different point of view, considering the commonly used spectrogram in its absolute-value
representation as an image, is applied in the work of Brandes et al.: before extracting a set
of common spectral features, the spectrogram is processed using advanced image processing
techniques. Here, the long element trains of frog and cricket calls are detected [BNF06].

1.2 Thesis overview

Basically, the topics discussed in this thesis can be subsumed in three major parts, focussing
on the bioacoustic facts, their technical measurements and the evaluation of the latter in
realistic scenarios.

The work on hand is focused on the analysis of signals being recorded in open biological
environments. As a consequence of the chosen monitoring scenario, the derived recordings
feature an heterogeneous set of acoustic events. Chapter 2 discusses the general censusing
goals and strategies usually encountered in such scenarios whilst concentrating on the methods
actually implemented in the thesis. Facilitating the description of birdsongs, the spectrogram
is introduced as a basic tool for the representation of acoustic signals. Moreover, the avian
headliners of this thesis are introduced to the reader. Here, the bioacoustic peculiarities of
the envisaged species are in the center of interest.

In the following Chapters 3, 4 and 5, both the technical representation and recognition of
birdsongs are discussed. In order to define the modes of representation used in the further
parts of this thesis, a basic mathematical description of the applied signal processing tech-
niques is given in Chapter 3. Here, the Fourier transform will be introduced, permitting a
mathematical definition of the spectrogram. Now, several representations of acoustic signals,
also called features, are developed in Chapter 4. As these representations are discussed in an
increasing order of abstraction levels, the final goal of detecting a birdsong is continuously
approached (see Figure 1.1):

Spectral F.Waveform StructurePeriodicity F.

ABSTRACTBASIC

Identification

Figure 1.1: Representation of bird voices: relation of abstraction levels.

A set of spectral features is extracted directly from the spectral representation of an audio
signal. Here, measurements commonly used in music information retrieval applications are
adapted to fit the actual topic. Later on, these features will be used for the preselection
of certain acoustic events. Furthermore, a more rough and thus quite robust spectrogram is
derived. Focusing on birdsongs containing periodic structures, a set of more robust periodicity
features is developed. Here, the spectrogram is analysed on the repetition of certain patterns.
The robust nature of the periodicity features will ascertain the robustness of the deducted
birdsong detectors.
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Chapter 5 introduces the features developed above to their applications in bioacoustic pattern
recognition systems. Following a methodological order, the distinct stages of the Chaffinch
and Savi’s Warbler detector will be described. Here, some techniques commonly used in mul-
timedia retrieval applications, as Dynamic Time Warping, will be applied. Furthermore, some
of the techniques developed for the detectors will be adapted to solve more general detection
and analysis problems. Hence, an algorithm providing an automatic acoustic scene analysis is
proposed. Moreover, several structure extraction methods, analysing the systematic character
of birdsongs, are described.

In the last part of this thesis, the Chaffinch and Savi’s Warbler detectors’ performance will
be evaluated. As referred in Chapter 6, a voluminous set of monitoring recordings was used
to test the latter of the algorithms. The testing data was compiled from a large monitoring
database, and special attention was given to the distribution of several noise conditions.
Finally, in Chapter 7, the techniques being previously described are summarised. Considering
the basic nature of some of these approaches, several improvements are proposed for future
work. The thesis closes with some ideas on additional application fields of the periodicity
features.



Chapter 2

Acoustic monitoring of bird
activities

2.1 Unsupervised monitoring

Bioacoustic monitoring, as described by Rempel et al. [RHH+05], constitutes a useful ex-
tension to the methods used for the evaluation of songbird populations. Here, instead of
ad-hoc accessing the desired population sizes afield, the statistics are extracted from long-
time acoustic recordings. In a typical unsupervised monitoring scenario, a set of microphones
is positioned in certain areas of interest. Fortunately, this intrusion can be scheduled prelim-
inary to the typical breeding season of the birds. Thus, assuming the recording apparatus
itself to be rather small, the interference on the recorded species’ natural behaviour may be
significantly reduced. In contrary to the usual ornithological practice, the setup of the record-
ing apparatus can be realised by non-birders. Once set up, the microphones may record a
significant amount of acoustic data. Here, the amount of recorded material is bounded by the
capacity of the final recording medium. Using modern hard disk drives, the ultimate record-
ing time is rather large, e.g. 375 hours of 4-channel CD-quality recordings fit on a 500GB
disc. Moreover, triggering the recording events by either time schedules or acoustic events,
the former capacity may be utilized more efficiently. Besides the previous limitation, the
power consumption of the whole recording equipment states a critical factor on the system’s
running period. In the monitoring scenario described in Chapter 6.1, solar power was utilised
to suspend and recharge the system’s power reservoir.

As the setup of the monitoring microphones is usually static, the directionality and orientation
of these sensors determine the actual acoustic field to be monitored. Here, the application of
sensor-arrays promises a more flexible approach: subsequent to the recording, the accumulated
audio signals may be focussed on arbitrary positions using acoustic beamforming techniques,
as described in [VB88]. Most of the recordings considered in this thesis were picked up using
4-channel arrays of cardioid microphones.

Unlike the usual recordings performed by ornithologists, often being focussed on a single
individual of interest, monitoring recordings usually contain an assemblage of acoustic events
(see Figure 2.1a). In many cases, the volume of an envisaged species is outperformed by
another animal. Also, besides the sounds made by neighbouring animals, a great influence is
given by the noises produced by our technology. This is especially the case when recording
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14 CHAPTER 2. ACOUSTIC MONITORING OF BIRD ACTIVITIES

in urban environments. Here, a complex mixture of diverse noise sources complicates the
automatic detection of bird voices. Given a more natural environment, the main sources of
noise are represented by wind and rain (see Figure 2.1b,c). Moreover, the noise of planes and
trains contributes to the overall noise floor.
As a further factor, the influence of alterations of the acoustic signal, being induced by the
environment, is a serious issue when recording in a monitoring setting. Especially in forests,
the echo and reverb effects produced by the trees, reflecting the animal sounds, have to be
considered when developing an automatic recognition system. In urban areas, these effects
are also prominent in places being surrounded by concrete walls. An additional aggravation
is given by the animals’ distances to the microphones being almost unrestricted. Thus, the
echo of a birdsong may easily arrive at the sensor with a volume being comparable to that of
the direct signal. Furthermore, given the typical low-pass character of air, birdsongs recorded
from greater distance lack some of their typical harmonic components. Thus, the amount of
information being usable for an automatic detector is reduced.
As shown in the previous paragraphs, although the material being derived during a moni-
toring session may be reused for various applications, the extraction of clean parameters for
individual acoustic events states a challenge. Thus, the robustness of the envisaged detectors
will be a main factor affecting the performance of the detection algorithms. In this thesis,
the robustness of the detectors will be based on robust feature extraction mechanisms. In
other words, the goal of the proposed routines is to extract parameters being characteristic to
the targeted birds’ songs, whilst keeping the extracted values invariant up to the distortions
mentioned above.
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Figure 2.1: Spectrograms of typical monitoring recordings for three typical environmental
conditions.

2.2 Detection goals

As the algorithms to be developed in his work have their main applications in the areas of
biological censusing and biodiversity assessment, the output of the procedures should suit the
specific requirements. Actually, the mentioned topics require different modes of automatic
acoustical scene analysis. In order to develop a suitable automatic detector, the following
demands have to be evaluated:

• Definition of the elementary detection subject(s): detect single individuals, certain
groups, or build a generic detector for a species.
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• Specification of the detection accuracy : detect all/some songs of a bird. Allow some/no
false detections.

• Quantification of the detection classes: simultaneously distinguish between multiple
species or individuals?

From the computational point of view, the mentioned detectors are represented by classifi-
cation routines. Here, a simple detector, designed to recognise a distinct species, is realised
using a binary classifier. For example, in the Chaffinch detector, the monitoring recordings
are partitioned in segments classified as either “non-Chaffinch” or “Chaffinch”.
This concept is also applied on the Savi’s Warbler detector, but, in contrast to the Chaffinch
detector, two operational modes are implemented for the latter algorithm. When set to
the first mode, the detector is only applied to some particular segments determined in a
preprocessing step. Thus, some computation time is saved, but the detector is likely not to
find all occurrences of this bird’s song. Still, if the actual focus is set on a raw estimate
of the Savi’s Warbler’s presence, the output of this algorithm should prove to be sufficient.
On the other hand, a second operating mode provides the means for annotating almost all
occurrences of Savi’s Warbler songs.
For the detectors mentioned above, the internal signal representations, including the features
to be described in Chapter 4, are designed to reflect the parameters being most descriptive
for the envisaged species. Moreover, the classification criteria are fixed on the observation of
distinct parameter ranges. Thus, the detectors are only suitable for scenarios where a single
species has to be detected. In order to perform the detection of multiple species, the feature
set has to be reconsidered. Here, the features have to reflect some parameters of each of
the envisaged species. Furthermore, the new feature design must allow a discrimination of
these species. In Chapter 5.3.2, a feature set designed for such a multi-species detector is
introduced. The actual classification is usually performed by a learnable classification system
as a Neuronal Network or a hidden Markov model. This allows for an automatic evaluation
of classification parameters, which is, however, beyond the scope of this thesis. Several
remarks are given at the appropriate positions, proposing further applications including such
classification systems.
Considering the accuracy of the Savi’s Warbler and Chaffinch detectors, the algorithms were
designed to achieve a minimum percentage of false positives. Thus, the number of segments
being falsely classified as Chaffinch songs is minimised. Unfortunately, as more candidates
have to be discarded, this usually leads to an increased amount of false negatives. As described
in 6.2, this is also the case for the Chaffinch detector. Then again, as mentioned at the
beginning of this section, the requirements of a different censusing approach may enforce the
minimisation of the percentage of false negatives. For example, if all performed stanza’s of
a Chaffinch shall be manually analysed, the increased amount of false positives can be easily
reduced by the user performing the manual postprocessing. Thus, the algorithm may be
parametrised to return a more vaguely classified set of song candidates.

2.3 The acoustic nature and representation of birdsongs

Being part of the natural acoustic background since the beginning of the human race, bird-
songs are often conceived as little more valuable. Thus, today, the usual perception of a com-
mon birdsong may be compared to the superficial perception of a warehouse radio. Anyhow,
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the songs of some common birds are easily identified by many people. Physically represented
as an ordinary acoustic wave, the song of a bird can only be recognised as such by an ac-
tive learning effort. Here, the problem of an “adequate” representation arises. Actually, the
usability of a distinct representation is mainly determined by the intended recipient of the
chosen representation. Thus, a bird’s internal representation of its song may be completely
different from the way we perceive it. Focusing on a representation suitable to the author and
readers of this thesis, and thus neglecting the intentioned receiver of the discussed signals,
the name of the topic itself motivates a first approach: bird - song.

Availing oneself of the opportunity of listening to a birdsong with the suitable interest, the
reader may agree that both music and birdsongs allow the introduction of parameters like
dynamics, tonal variance and timing. Moreover, the introduction of certain sequences of
fixed entities, as found in a melody or rhythm, can easily be transported to the structured
nature of many birdsongs. Thus, the terms of a bird’s melody, the Woodpecker’s rhythm
or the Chaffinch’s song are based on intuitive relations. The long tradition of this concept
is underlined by examples as of Athanasius Kircher noting down the voices of several birds
by means of short musical scores in 1650. Here, a Chaffinch song, mimicked in Olivier Mes-
siaen’s “Catalogue d’oiseaux” will be used as an example to depict the potential of such a
representation.
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Figure 2.2: Excerpt from Messiaen’s “Catalogue d’oiseaux, XI”, containing a Chaffinch motif.
The left-hand part of the score is omitted.

Composing the piece in the middle of the last century (1958), whilst being versant with the
structural tools found in contemporary serialism, Messiaen uses a wide range of notational
and textual symbols for describing this common bird’s song. Here, instead of tying the song
to a simple, proven structure, the birdsong’s structure is attempted to be left untouched,
establishing its inherent structure instead.

Considering the scientific ornithologists, the musician, writing the bird’s score, was substituted
by an apparatus some years before. The spectrogram, with the sonograph as its predecessor,
notating the bird’s voice by means of a time-frequency diagram, replaced the musical score by
referring loudness, tonal frequencies and rhythms in continuously variable parameters. Thus,
the limitations of the historic musical notation system were overcome by a more physical
low-level representation of the birdsongs.

In Figure 2.3, a spectrogram of a typical Chaffinch’s stanza is depicted. The colour of each
dot in this image represents the energy contained in a distinct frequency band at a distinct
time interval. As indicated by the reference scale shown in Figure 2.5, black dots represent
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Figure 2.3: Spectrogram of a Chaffinch’s (Fringilla coelebs) stanza.

high energy measurements for the respective coordinates. The main structure of the song
might thus be sketched by drawing the sequence of dark black lines in a range from 2-
6kHz containing the majority of the depicted signal’s energy. These lines carry what is
called the “main melody” of the song, as highlighted by the lower red boxes. Considering
the continuous frequency progression within these single lines, especially at the end of the
stanza, the spectrogram can still be taken as an instruction for whistling the Chaffinch song.
Moreover, the above spectrogram features a simultaneous sketch of the melody in the higher
frequencies (blue, dashed boxes). As it is the case for the Chaffinch’s song, these components
are caused by harmonics: multiples of the frequencies contained in the main melody, being
generated by the acoustic characteristics of the bird’s singing apparatus.
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Figure 2.4: Colored spectrogram of a Chaffinch stanza. Frequency band: 1.5-10 kHz.

The above Figure 2.4 images a coloured excerpt of the previous example. The black-white
spectrograms, focussing on high-energy components of a signal, are more easily interpreted
by the reader. Thus, in this work, non-coloured spectrograms will be used where applicable.
However, when the simultaneous representation of both foreground and quiet background
signals is demanded, the jet colour map is used for the representation of signal energies.
Using this colour space, being larger than the black-white parametrisation, when representing
spectrograms and features, noisy signals are depicted more accurately. The relation of signal
energy and image colours is depicted in Figure 2.5.
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(a) colour (jet)

(b) greyscale

highlow

Figure 2.5: Colormaps used for spectrograms and feature representation.

In this work, the spectrogram, being widely used for the description of acoustic signals, will
represent the different acoustic examples to the reader. With little training, the identifi-
cation of some bird sounds as well as the imagination of their acoustic impressions can be
accomplished by many people. In contrast, the digital representation of a spectrogram is very
difficult to interpret for the machine. Thus, representing the main topic of this work, com-
plementary representations have to be introduced, measuring some basic as well as advanced
parameters of the analysed signal. These features, introduced in Chapter 4, and the outcomes
of the following analysis steps are explained in an order of ascending abstraction levels, as
depicted in Figure 1.1.

2.4 Chaffinch (Fringilla coelebs, Buchfink)

In Europe, the Chaffinch or Fringilla coelebs is a widespread and very familiar songbird.
The IUCN Red List of Threatened Species estimated the number of individuals populating
Europe to 270-480 million birds [IUC] in 2004. Its song, although being quite complex, is
easily identified by many people. This, on the one hand, may be caused by the quite frequent
appearance of the bird and its song, which, considering the actual situation in Germany, can
be heard at least since March. On the other hand, examining the spectrograms of different
Chaffinch stanzas in Figure 2.6, the idea of an underlying structural similarity may arise.
At first it has to be noted that the excerpts shown in the respective figure are drawn from
different recordings of different individuals. As the reader may have noticed by listening to
the song of the about 15 cm tall bird, the stanza instantiations of a single individual, being
sung in a close time range, are very similar to each other. In addition to the mentioned
structural form, this precise similarity, in the very first encounters to this birdsong, made the
author reckon to work on an relatively manageable amount of variations. But, far from it,
after analysing the recordings at the Animal Sound Archive at the Berlin University, it was
clear that approaching the development of a generic detector for this species required a quite
general description of a Chaffinch song’s structure.

In order to achieve some knowledge about common song parameters, a survey, being discussed
in detail in the next section (2.4.1), was carried out. Thereby, a special focus was set to the
usual segmentation of the individual stanzas. This segmentation is motivated by the usually
repetitive structure of a Chaffinch’s stanza, constituting groups of repeated spectral entities.
This structure is already depicted in Messiaen’s musical representation of a Chaffinch stanza,
depicted in Figure 2.2. An almost canonical finishing flourish, as performed by all of the six
individuals analysed in the respective figures, was identified, surely facilitating the recognition
of the bird’s song by humans. Furthermore, the overall frequency range used by the respective
birds was found to be bounded by about 2 and 8 kHz, respectively, although some harmonics
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of the tones being sung easily exhaust the frequency range audible to humans. Beside these
common factors, the songs of two individuals may differ by many factors at different structural
levels.
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Figure 2.6: Spectrograms displaying song stanzas of 6 different Chaffinch individuals.

2.4.1 Song structure

In order to describe the song of the Chaffinch in a detailed way, a hierarchical terminology
describing the components of a song will be introduced first. Regarding the existing literature,
the meaning of the proposed terms seems slightly variable. In this work, the definition of the
following components is based on those used by Bergmann and Helb [BH82]. As the goal of
this chapter is to describe the structure of the Chaffinch’s song, we will take this song as an
example for a typically structured birdsong. Actually, being well structured, the Chaffinch’s
song is often used for this purpose.

It is obvious, that timing and temporal structure are of great importance for the singing
behaviour of birds. On a large scale view, a temporal constraint is given by the seasons
in which the Chaffinch usually sings. As with most of the other songbirds, these periods
are centred around the breading season of the particular animal. Within a singing season,
the Chaffinch concentrates the performance of its songs on the times of dawn and sunset.
Each dawn, several songs are sung by the bird. In the case of the Chaffinch, these songs are
instantiated through the repetitive vocalisation of song stanzas, which are recognized as the
bird’s melody or theme. Each of these stanzas takes as long as about 2-3 seconds, and a space
of about 6-12 seconds is usually left between two consecutive stanzas.
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As many songbirds are able to adapt their singing behaviour to short- and long-time distur-
bances of their habitat, for example placing their stanzas in moments of silence as well as by
singing at night when the city noise floor is quite low, the quantifications given in this chapter
are meant to be estimates. Despite these deviations, the timing of the repetition noted above
is astonishingly accurate.

Song

Element Syllable Phrase Motif (Flourish)

Stanza

Figure 2.7: Hierarchical structure of a Chaffinch’s song.

The definition of the song’s fine structure, as depicted in Figure 2.7, is usually performed
in the spectral domain, using the spectrogram together with an acoustic impression to cre-
ate symbolic definitions. Each stanza is defined to be a successional construct of phrases,
syllables and elements. Here, the element as the smallest, atomic unit, resembles a short
and coherent line or blob in the spectrum. Common parameters used to describe an element
include amplitude, center frequency, time and frequency dimensions as well as a direction,
indicating a gradual increase or decrease in frequency. A syllable is usually built from two
different elements sounding in very close succession. Actually, the listener may perceive a syl-
lable as a single element. If an element or syllable is quickly repeated several times without
interruption, the repeated instantiations form a phrase. Here, the repetition frequency or the
period in which the elements are repeated, will built an elementary feature to be used in the
algorithms proposed in this thesis. In Figure 2.8, this frequency is annotated for the phrases of
a Chaffinch’s song. Observing the song of a Great Tit or Chiffchaff, a last structural element
is introduced. The motif is defined to be constructed from two or more elements, which, to
a listener, appear to be grouped but clearly distinct. In the special case of the Chaffinch’s
stanza, many instantiations end with a characteristic motif, also described as flourish. In
Chapter 5.2.2, this flourish will be used in a candidate extraction routine for the Chaffinch
detector. As the above definitions are subject to the listener’s perception, a certain amount
of ambiguity is to be expected.
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Figure 2.8: Chaffinch stanza with highlighted phrases and annotated element repetition fre-
quencies. The final, unboxed repetition is interpreted as part of a flourish motif.

2.4.2 Stanza segmentation study

In order to derive an abstract model of the Chaffinch’s stanza, to be used for designing the
classification routine described in Chapter 5.4.1, a small study was carried out in order to
get statistical data on the typical structure of the songs of this common bird. In this study,
115 stanzas from over 50 Chaffinch individuals, obtained from the Animal Sound Archive
of the Humboldt University, Berlin, were manually analysed by inspecting the extracted
spectrograms. The 115 stanzas were selected from a set of over 800 available stanzas. These
being grouped according to the recording they were contained in, the stanzas used in this
survey were picked randomly, but with a forced limit of a maximum of 3 stanzas per recording.
At first, each stanza was divided into a series of segments. A distinction between three types
of segments was made in this process: The segment type of main interest (type-I) is the
“phrase” type, corresponding to a single phrase as defined above. This type of segment is
defined to be delimited by significant changes either in the shape of the repeated syllables or of
the actual element repetition period. The latter case is exemplified in Figure 2.9, considering
the 3rd and 4th segment.
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Figure 2.9: Chaffinch stanza with highlighted segments. The segment types used for the
study are also annotated. The first segment, as well as with the two in the middle, are
counted as type-I. A single motif is annotated as type-II. The flourish typical for this species
is represented by the type-III category.

The remaining two types were both used to identify extracts fitting the definition of motifs.
Thereby, the type-III segments were associated to typical Chaffinch flourishs at the stanza-
tails. Other non-periodic segments were subsumed as segments of type-II. Now, for each
stanza, the total number of segments, and the following individual segment parameters were
measured:
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• Segment type,

• Temporal position within the stanza,

• Segment length,

• Relative loudness regarding the whole stanza,

• Element number and repetition period of type-I segments.

In the following paragraphs, a selection of those results being relevant for the elaborated
algorithms are presented. Performing the manual segmentation without leaving any space
between the segments, the length of the whole stanza can be reconstructed from the individual
lengths of its segments. For the calls analysed in this study, the mean stanza length amounts
to 2533 ms with a standard deviation of 440 ms (17%) and extreme values of 1460 ms
and 3720 ms, respectively. Considering the segment volume, the variation was found to be
negligible, though 5 of the first call segments, mostly being high pitched, were recorded less
loud than the rest of the related segments. This quiet stanza beginning is also represented in
Messiaen’s Chaffinch score (Fig. 2.2).

Considering the number of segments usually found in a stanza, the following Figure (2.10)
reveals that the majority of stanzas contain 4-5 segments:
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Figure 2.10: Two statistics on segment distribution. Left: percentage of segments extracted
from stanzas. Right: amount of stanzas having a specific number of type-I segments in %.

Only counting the type-I segments, it is obvious that the majority of all segments belongs
to the phrase category. Usually, one or two non-periodic segments can be found in a stanza.
As it was ensured that all evaluated stanzas contained the typical type-III finishing flourish,
we can conclude that 73% of the analysed calls had no further non-periodic segment of type
II. In the classification routine to be developed in section 5.4.1, only a single such segment
is allowed for a successful detection. Thus a maximum of 89% of this survey’s test set is
covered by the referred procedure.

Considering the periodic segments, an average number of 5 elements is repeated in each
stanza. The mean repetition frequency was measured to 8.8Hz. Both of the previous values



2.4. CHAFFINCH (FRINGILLA COELEBS, BUCHFINK) 23

are measured with standard deviations around 55%. This rather big variance is established
by the extreme values for the element repetition frequency being measured as 2.6 Hz and
36 Hz, respectively. A more detailed analysis was performed on the subset comprising the
stanzas that feature a total of 4 segments, whereas 3 of these are classified as type-I. Such
stanzas are printed in the two bottom-most spectrograms shown in Figure 2.6. As the last
segment is always of type-III, the mentioned stanza class is described by the succession of
the segment types I-I-I-III. Representing 46% of the whole test set, the element repetition
frequencies of the individual segment positions were analysed for this subset.
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Figure 2.11: Histogram showing the distribution of element repetition frequencies on the
segment positions. Only type I-I-I-III stanzas were analysed.

In the period histogram (Fig. 2.11), the three relevant segment positions’ typical element
repetition frequencies are analysed. As the final flourish is assumed to be aperiodic, the
corresponding position is ignored in this step. Most of the element repetition frequencies
are located around 7-8 Hz, although the second segment, being located in the midst of the
call, features lots of element repetition frequencies being significantly greater. The other two
segments’ frequencies are bounded by about 15 Hz (see Table 2.1). This phenomenon, which
may be partially based on a “slow start” of the singing bird, will lead to a minimum require-
ment on the inter-segment element frequency alternation used for our Chaffinch detector, see
Chapter 5.4.1.

Seg. position 1 2 3
Mean 6.6 13.1 6.1
Std 3.1 7.0 1.5
Min 2.6 4.6 3.3
Max 16.3 35.9 11.2

Table 2.1: Element repetition frequencies for individual segment positions. Mean, standard
deviation and extremal values in Hz. Only 4-segment stanzas were analysed.

Finally, the individual segment lengths were analysed. Similar to the results for the repetition
frequency, the mean segment length of 580 ms is drawn from a strongly inhomogeneous set,
featuring a standard deviation of 60%. Thus, the smaller (type I-I-I-III) subset, used for
the periodicity analysis above, was also used for a detailed analysis of the position-separated
segment lengths. In the corresponding histogram (Fig. 2.12), the long, continous-frequency
segments, which are likely to occur at the beginning of a stanza, are pushing the segment
length for this first position beyond the usual length measurements. A call featuring such a
segment is displayed in the top-right corner of Figure 2.6.
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Figure 2.12: Histogram showing the distribution of segment length on the segment positions.
Only type I-I-I-III stanzas were analysed.

Seg. position 4 3 2 1
Mean 495 616 579 770
Std 134 188 195 315

Table 2.2: Segment length statistics for individual segment positions. Mean, standard devia-
tion and extreme values in ms. Only 4-segment stanzas were analysed.

2.5 Savi’s Warbler (Locustella luscinioides, Rohrschwirl)

Being discovered by the Italian geologist and ornithologist Paolo Savi, the subsequently ad-
dressed singing bird is called Savi’s Warbler. In contrast to the Chaffinch, Savi’s Warbler,
inhabited in Europe, has a small population of about a million individuals [IUC]. Living in
wetland habitats, this bird uses the reed bed to both sing and collect its food. Due to its
colour, which is well adapted to the typical texture of its habitat, and the small size of about
14 cm, the bird is usually well hidden. In order to collect data on this bird’s population, visual
identification turns out to be quite difficult given the short distance necessary to identify the
bird. However, the song of this small bird figures out to be very characteristic, although
it may be confused with the call of Roesel’s Bush-cricket. The Warbler’s cricket-like song,
enduring from call-like 3 seconds to a timespan of several minutes, is based on the fast repeti-
tion of two similar elements, as shown in the left column of Figure 2.13. Here, fast repetition
means an element repetition frequency between 45 and 55 Hz. Considering the spectrogram,
Savi’s Warbler’s song is represented by a steady cloudy stream, peaking at about 4.2 kHz,
which contains the mentioned element train. Although this click-train features several higher
frequencies with peaks around 7 and 14 kHz, these components are quickly lost when record-
ing a more distant bird. In Figure 2.13, the right column shows a two channel excerpt taken
from a four-channel monitoring recording. Here, two warblers are taking turns in singing.
Although the song of the first bird, being best recorded in the first channel (upper figure),
features frequencies exceeding 6 kHz, the second channel (lower figure), recording the second
bird from greater distance, does not show such high frequency components. Note although
the center frequencies of both individuals differ by 200 Hz, their element repetition rate is
almost identical.

Considering its general singing behaviour during the breeding season, the Warbler is easily
captured on tape: when domiciled in the recording area, the single individuals are likely to be
recorded during their several hours of active singing per day. In general, there are two types of
songs being sung by the bird. The typical song can last more than 20 minutes, featuring only
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Figure 2.13: Left column: Two spectrograms, each displaying the elements of a Savi’s War-
bler’s song, with high time resolution. The bottom figure shows a nightly song, recorded at
great distance. In order to depict the gentle sound, the latter signal has been amplified. Right
column: Spectrograms of a stereo recording featuring two Warblers’ songs.

short breaks. Listening to the recordings made at Lake Parstein, Germany, the simultaneous
singing of two or even more Savi’s Warblers is a common event. Besides these long songs,
some short phrases are often added to the simultaneous song of another Warbler. As both
of the mentioned song types feature the constant 50 Hz element frequency, the Warbler has
been called a “flying oscillator”, the detector introduced in Chapter 5.3.1 will be based on a
robust detection of this oscillation.
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Chapter 3

Audio signal processing background

Having introduced the target signals to be detected as well as the conditions under which this
detection has to be performed, we now switch to the computational point of view. In this
chapter, some basic mathematical requirements and techniques will be introduced, as a basis
for understanding the subsequent feature extraction routines.

At first, a mathematical representation of (audio) signals is introduced. This allows for a
quick discussion of the audio digitalisation procedure and its effects on the sampled signal.
Furthermore, the Fourier transform, yielding a complementary representation of the audio
signal and revealing its properties in the frequency domain, is introduced. The convolution
operator is introduced and, exploiting the properties of the above transform, the fast convo-
lution method and its application to digital filtering will be derived. In this thesis, digital
filters will be mainly used for the purpose of smoothing or low-pass filtering signals. Finally,
the spectrogram, as introduced in the previous chapter, will be defined on the basis of the
windowed Fourier transform.

3.1 Notation and mathematical symbols

In the following, the symbol ”·” is usually used for scalar multiplication. Furthermore, when
used as a parameter to a function or vector, it denotes the free parameter as in

x(·) := (. . . , x(−1), x(0), x(1), . . . )>.

In between two vectors or functions x, y : D → R, for D ⊆ Z or D ⊆ R the symbol ”·” denotes
the pointwise multiplication of x and y:

(x · y)(k) := x(k)y(k), k ∈ Z.

3.2 Audio signals

Physically, an audio signal is an interpretation of an acoustic pressure wave, propagating along
various carrier substances with a certain speed. In bioacoustics, the most popular carriers
are water and air, the latter also being the usual case with songbirds. Finally arriving at the

27
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diaphragm of the monitoring microphone, the song emitted from a bird will have undergone
several acoustic modifications described in section 2.1. Now, the type of this microphone will
finally affect the translation of air pressure modulation into an electric signal. Here, the angle
of the sound that arrives at the sensor, as well as the microphone’s directional characteristics
and frequency response, will be of importance.

The previous instantiations of an acoustic signal can be mathematically expressed as functions
f : R → R. Observing the change of air pressure from a fixed point of view, the domain
R represents the time axis, and the range R measures the relative deviation from normal
air pressure. In the electric domain, the latter expresses the amplitude of voltage change
transmitted by the microphone. The signal’s waveform is thus represented by the graph of
its function f .
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Figure 3.1: Voltage alternation induced by the call of an Eurasian Bittern (Botauris stellaris).

3.2.1 Sampling

As the electric sound signal reaches the audio card of a digital recording hardware system, it is
converted into its digital representation by the A-D converter. Most commonly, audio signals
are stored as pulse code modulation (PCM) files. These represent the signal as a series of
sampled signal values, corresponding to precisely timed voltage measurements. The samples
can be obtained using sampling and quantisation techniques, which realize the discretisation
of an analogue signal in the time and energy domain. A sampled and hence discrete time
signal is mathematically expressed as a function x : Z→ R, where Z depicts the equidistantly
sampled time domain. Let f be a continuous time signal. These sampled signal is then
defined to be n 7→ f(T ·n), for n ∈ Z. T is called the sampling rate. Sampling a signal, it is of
significant importance to choose an adequate sampling rate T or sampling frequency fs = 1

T .
According to the Nyquist theorem, a T -sampled signal can only be perfectly reconstructed
if its frequency bandwidth is bounded by 1

2·T . Hence, the signal is usually cleaned from
components exceeding this threshold by means of low-pass filtering it in a preprocessing
step. As the filtering mentioned above cannot perfectly erase the overlapping frequencies,
more or less small errors, known as alias signals, are introduced during the sampling process.
This is especially the case with time-limited signals. In Figure 3.2, the Bittern signal shown
above is sampled using a sampling frequency of 500 Hz. As the call of this bird does not
contain significant energies in frequencies above 170 Hz, the sampled approximation is quite
precise. In order to guarantee an appropriate representation of the bird voices considered in
this work, the utilized audio recordings are stored using a minimum sampling frequency of
48 kHz, consequently containing information of frequencies up to 24 kHz. Thus, during the
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recording, a voltage measurement is made every 41.6̄ microseconds. In the following, this
sample rate will be used as a reference for all sample time related values.
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Figure 3.2: 100 ms excerpt from the Bittern signal of Fig.3.1, sampled at 500 Hz. The sampled
values are indicated by red stems.

For the above definition of a discrete-time signal, the superposition of two sampled signals
x, y : Z → R is defined by the pointwise sum (x + y)(t) := x(t) + y(t). Amplification of an
audio signal by a factor λ ∈ R is expressed through scalar multiplication: (λf)(t) = λf(t).
The resulting vector space RZ is very large and contains bad signals with infinite energy or
sample values. Thus, one usually restricts the set of described signals to the Lebesgue spaces
`p(Z), which are defined as follows:

Let 1 ≤ p <∞ be a real number. The Lebesgue space `p(Z) is defined as

`p(Z) :=

{
x : Z→ C

∣∣∣∣∣∑
t∈Z
|x(t)|p <∞

}
. (3.1)

The Lebesgue space `∞(Z) contains all signals with bounded sample values:

`∞(Z) := {x : Z→ C | ∃B > 0 : ∀n ∈ Z : |x(n)| ≤ B}. (3.2)

The maps

||x||p :=

(∑
n∈Z
|x(n)|p

)1/p

for 1 ≤ p <∞,

||x||∞ := sup{|x(n)| | n ∈ Z}, and

〈x, y〉 :=
∑
n∈Z

x(n)y(n). (3.3)

define a norm and the scalar product on `p(Z) and `∞(Z), respectively. These spaces are
complete with respect to the norms and therefore constitute Banach spaces.

Allowing the signal x to be a complex valued function is very useful for describing some
important mathematical findings. A real-valued signal x : Z→ R is easily extended to C by
defining the imaginary part to be zero. For the above `p spaces, intuitively, the parameter p
controls the roughness of the contained signals. The smaller the value for p, the less samples
with large amplitudes are allowed. Moreover, the `p(Z) spaces are nested: for 1 ≤ p < q ≤ ∞,
`p(Z) ⊆ `q(Z) holds. Note, that for p = 2, the Lebesgue space contains only signals with finite
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overall energy. In general, audio recordings of finite length and thus having a finite domain
I ⊂ Z, are extended to Z by assuming the unknown parts of the signal to be zero. Hence,
these signals, being bounded sample wise, are contained in the space `2(Z), which now will
be in the centre of our interest.

3.2.2 Quantisation

As the limited memory of a machine is incapable of representing the whole amplitude range
R, each sampled value is approximated by an integer of fixed precision. In general, a uniform
quantiser is used to quantise the amplitude values at the sampled time positions. To this end,
a maximum measurement value is defined, and the residual range is divided into uniformly
spaced intervals. Each sampled energy value is represented by a 16 or 24 bit integer, corre-
sponding to the interval containing the measured value. Note that this discretisation step
is generally lossy for real-valued analogue signals. In contrast to the sampling process, it is
not possible to reconstruct a signal from it’s quantized version. An example displaying the
extremely rough quantisation of the Bittern sample is provided in Figure 3.3. For an ideal
uniform quantiser, the quantisation noise is estimated to a minimum of 20 · log10(2Q) = 96.33
dB or 144.5 dB for an uniformly distributed input and Q = 16 or 24. Especially when work-
ing with very sensitive equipment and fixed preamplification parameters, in an environment
featuring a high dynamic range, the choice of this bit depth becomes important concerning
the signal to noise ratio of weak signal sources. In the further theoretical details, however,
the quantising step will be neglected for the sake of simplicity and the signals will be handled
as continuous-valued functions bounded by the extreme values of -1 and 1.
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Figure 3.3: 100 ms excerpt of the Bittern signal, sampled at 500 Hz and quantised using a
total of 9 quantisation intervals. The sampled values are indicated by red stems.

3.3 Spectral analysis and filters

Despite notable exceptions such as those proposed in [Che01], only few features meaningful for
a robust pattern recognition task can be derived directly from the above amplitude-oriented
signal representation. As shown in the left hand side of Figure 3.4, the amplitude plot (c) of an
recorded signal is quite useful for the comparison of amplitude parameters: the pianissimo(pp)
and fortissimo(ff and fff) sections noted in Messiaen’s score have their obvious correspondences
in the amplitude plot. However, the tonal or frequency information cannot be intuitively
derived from the latter representation. In order to gain more information, especially on the
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(a) Messiaen’s score of Eurasian Bittern call
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(c) Amplitude plot of Eurasian Bittern call
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(d) Matching excerpt from amplitude plot
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(e) Spectrogram of Eurasian Bittern call
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Figure 3.4: Left column: comparison between different representations of a Bittern call:
(a) score, (c) amplitude and (e) spectrogram. Right column: motivation of decomposition
performed by the Fourier transform: (b) score, (d) matching excerpt from Bittern’s amplitude
representation, and (f) cosine function used for the frequency analysis.
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frequencies contained in the input, the discrete signal is transformed into the frequency domain
using a discrete windowed Fourier transform, the WFT. Therefrom we derive some elementary
features by means of partitioning and coarsening the WFT data. The WFT representation is
very similar to the sonogram, which was widely used by ornithologists to analyse bird voices.
Both procedures can be used to analyse and display the frequency content of a sound and its
variation in time, using a two-dimensional image. Here, time is represented on the horizontal
axis while the vertical position of a point refers to a frequency band. The intensity of a dot
in that image measures the amplitude of the associated frequency at a specific time instant.
Now, comparing the spectrogram (e) to the score, some tonal differences between the artistic
work in the score and the sound, analysed by means of the spectrogram, become obvious:
although the last note “D” of the left-hand score, corresponding to a frequency of about
147 Hz, is matched in the spectrogram, the uprising sequence in the beginning of the score
is inverted in the actual recording. Actually, the score and spectrogram depict calls from
different individuals, thus representing different audio signals.

3.3.1 The Fourier transform

The Fourier transform originates from the Fourier series, named after the French mathe-
matician Jean Baptiste Joseph Fourier (1768 - 1830). It defines an orthogonal transform of
periodic signals, for example f ∈ L2([0, 1]), to the orthonormal basis{

1,
√

2 cos(2πk·),
√

2 sin(2πk·)|k ∈ N
}
, (3.4)

where 1 represents the unity function defined by 1(t) = 1, ∀t ∈ R. Since these sine and
cosine waves can be interpreted as prototypes for periodic sounds of different pitches, like
very primitive tones, decomposing sounds into (infinite) mixtures of the above base vectors
will reveal their tonal or frequency-related properties. In fact, many birdsongs have a strong
tonal character, making them accessible for imitations by flutes or whistling. The call of the
Eurasian Bittern, as displayed in Figure 3.4 is one of them. As shown in the right column
of this figure, the last, and loudest portion of the call (excerpt shown in (d)) corresponds
to the musical note “D” (top), which in turn is usually associated to a frequency of 147
Hz, represented by the cosine curve at the bottom. Thus, the aspired decomposition of bird
sounds into frequency signals promises to deliver an appropriate representation. Using Euler’s
theorem, the above basis can also be expressed as

{e2πik·}, for k ∈ Z, (3.5)

comprising the sine and cosine information in the real and imaginary parts of the exponential.
For a discrete time signal x ∈ `2(Z), the Fourier transform (FT) is defined as follows:

x̂(ω) :=
∞∑

k=−∞
x(k)e−2πikω, for ω ∈ [0, 1]. (3.6)

The Fourier transformed signal x̂ ∈ L2([0, 1]) is a [0, 1]-periodic function having bounded
energy. A coefficient x̂(ω) corresponds to the average intensity of frequency ω within the
analysed signal. The imaginary and complex part of a coefficient refer to two signals that are
equal to each other except for a phase shift of 0.25, their ratio expressing information about
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the signal’s phase. In this thesis, we will concentrate on the absolute value of the spectral
coefficients, coinciding with the energy of the specific frequency in the signal. This repre-
sentation is called the power spectrum. Thus, the power spectrum of a sine wave sin(2πω·),
oscillating at frequency ω, will yield a single peak at that frequency.
Despite this intuitive analytical character, another quite practical property of the Fourier
transform is given by the following fact: In the frequency domain, the convolution operator
is converted to pointwise multiplication. Defining the convolution x ∗ y of two discrete time
signals x, y ∈ `2(Z) as

(x ∗ y)(n) =
∞∑

k=−∞
x(k)y(n− k). (3.7)

and considering the Fourier transform as defined above, the convolution theorem states that

(̂x ∗ y)(ω) = x̂(ω) · ŷ(ω). (3.8)

Thus, with the inverse Fourier transform defined as

x̌(k) :=
∫ 1

0
x(ω)e2πikωdω, for k ∈ Z, (3.9)

one can perform the convolution of two vectors x, y ∈ CN using both Fourier transforms:
(x ∗ y) = ž, with z(ω) = x̂(ω) · ŷ(ω). As detailed below, the computational costs for one-
dimensional convolution can be reduced from O(N2) to O(N logN) for two finite signals x, y
of length N .
With finite hardware, the implementation of the infinite sum and integral used in the above
equations is infeasible. We will now explain a discrete approximation of the Fourier transform,
which operates on finite subsequences of a discrete time signal. The discrete Fourier transform
of size N is an unitary isometry DFTN : CN → CN . For a finite discrete signal or vector x of
length N , the DFT is defined as

X(j) := (DFTN x) (j) =
1√
N

N−1∑
k=0

x(k)e−2πi kj
N , for j ∈ {0, 1, . . . , N − 1}. (3.10)

The inverse discrete Fourier transform (IDFT) is defined as

x(k) := (IDFTN X) (k) =
1√
N

N−1∑
j=0

X(j)e2πi kj
N , for k ∈ {0, 1, . . . , N − 1}. (3.11)

Thus, the j-th row of the DFTN -matrix, acting as a frequency reference or sampled exponential
curve, is given by powers Ωjk

N , k ∈ {0, 1, · · · , N − 1} of the N -th roots of unity

ΩN = e−2πi 1
N , (3.12)

and thus

DFTN (j, k) :=
1√
N

Ωjk
N , j, k ∈ {0, 1, · · · , N − 1} (3.13)

IDFTN (j, k) :=
1√
N

Ω−jkN , j, k ∈ {0, 1, · · · , N − 1}. (3.14)
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The DFT uses a discrete and equidistant sampled set of base vectors to approximate the
Fourier transform. Sampling the frequency domain implies a time domain N-periodicity of
the signal to be transformed. Thus, the above convolution theorem (3.8), does not apply for
the DFT. Instead of calculating the convolution of finite dimensional vectors, the convolution
of two periodic discrete time signals is performed, resulting in what is called the cyclic con-
volution. In this, the cyclic convolution x ∗N y of two discrete, finite time signals x, y ∈ CN

is defined as

(x ∗N y)(n) =
N−1∑
k=0

x(k)y((n− k) modN). (3.15)

Now, for the DFT, (DFTN (x ∗N y)) (j) = X(j) · Y (j), ∀j ∈ {0, · · · , N − 1} holds.
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Figure 3.5: Cyclic and standard convolution of signals x and y. The blue curve on the bottom
depicts standard convolution, the above red curve plots cyclic convolution.

As the above cyclic convolution is, also, N -periodic, the N DFT coefficients contain all the
usable information. In contrast to the standard convolution, having a data length of 2N − 1
points. In the bottom left plot of Figure 3.5, the two convolution approaches are compared
using two signals x, y ∈ CN , N = 56. Here, y, only having a support of length M < N ,
has been extended using zero values. The standard convolution of x and y is plotted as the
lower, blue curve. The red curve, plotted on top of the latter, depicts the cyclic convolution
of the signals. As an effect of the periodic continuation of the functions, only the positions
M ≤ p ≤ N feature identical values for both curves. As shown in the bottom right plot (d), it
is also possible to calculate the standard convolution of x, y ∈ CN , as stated in (3.7), by using
the DFT2N . Therefore, both signals are extended to C2N by means of adding zero values.
E.g. x is extended to
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x′(n) =

{
x(n) if 0 ≤ n < N,

0 otherwise.
(3.16)

Now, the DFT2N is used to calculate (x′∗y′). We are interested in the convolution coefficients
0 ≤ n < 2N . The periodically continued signals have zero values at the last N positions.
Thus, by doubling the convolution’s period, the overlapping parts only contain zeros, and we
arrive at the standard convolution operation.
Although calculating the double amount of data points seems inefficient at first glance, it
leads to a very efficient algorithm for fast convolution: being expressed as an N ×N -matrix,
with N = 2n, n ∈ N, calculating the DFT is possible in time O(N logN) by using a matrix
factorisation-based algorithm rediscovered by Cooley and Tuckey. This algorithm is also
known as the fast Fourier transform (FFT). Thus, combining the previous statements, the
cyclic convolution x ∗N y, can be performed by computing three O(N logN) transformations
instead of needing O(N2) time.
In the further explanations, a two-dimensional convolution and FFT algorithm will be used
for some image processing routines. For x, y ∈ CN×M , the convolution operator x∗y is defined
as

(x ∗ y)(n,m) :=
N−1∑
k=0

M−1∑
l=0

x(k, l)y(n− k,m− l). (3.17)

As for the one-dimensional case, the convolution can be efficiently computed using the DFT
for the zero-padded signals in C2N×2M . For x ∈ CN×M , the two-dimensional DFTN×M is
defined as

X(n,m) :=
1√
NM

N−1∑
k=0

Ωkn
N

M−1∑
l=0

x(k, l)Ωlm
M , (3.18)

where n ∈ {0, 1, . . . , N − 1},m ∈ {0, 1, . . . ,M − 1}. The above formula can be obtained by
using two one-dimensional DFT’s as follows, using matrix notation:

X> = DFTM (DFTN x)>. (3.19)

3.3.2 Digital filters

In the following, linear systems T : `2(Z) → `2(Z) will be used to “smooth” various kinds
of signals. Considering the particular systems used in this work, we focus our attention on
the class of Finite Impulse Response (FIR) filters. Given a signal x ∈ `2(Z), an FIR filter
T is defined through the convolution with an associated signal hT ∈ `1(Z), having a limited
number of non-zero coefficients:

T [x](k) := (hT ∗ x)(k) ∈ `2(Z) (3.20)

Thus completely defining the filter function, hT = T [δ], where

`1(Z) 3 δ(t) :=

{
1 for t = 0
0 otherwise,
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hT is called the impulse response of the filter. As the convolution operator is linear, the filter
function adopts this property. Furthermore, the FIR filters are time invariant: T [x(·+c)](t) =
T [x](t+ c). Because hT only has a finite number of relevant coefficients, the length of an FIR
filter may be defined as

l(T ) := 1 + max{n | hT (n) 6= 0} −min{n | hT (n) 6= 0}. (3.21)

More generally, for hT ∈ `1(Z) of finite length and x ∈ `p(Z), the filter output T [x] ∈ `p(Z),
is defined and, considering the Young inequality, bounded by ||T [x]||p ≤ ||hT ||1 · ||x||p. In short,
FIR filters are stable LTI (linear time invariant) systems.
Actually, dealing with finite signals x, hT ∈ CN , the length of a filtered signal is preserved
by restricting the calculated convolution coefficients to n ∈ {0, · · · , N − 1}. For example, in
the previous Figure 3.5, a signal x is convolved with a Hann window (signal y). The signal
plotted in the bottom right plot, cut down to the indexes n ∈ {0, · · · , N − 1}, represents the
result of the filter T [x](n), for hT := y.
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Figure 3.6: Left: amplitude hT and Right: power spectrum ||HT || plot of a scaled Hann
window. The Fourier transformed coefficients are depicted on a logarithmic scale.

In the frequency domain, FIR filters are represented by the Fourier transform of their impulse
response. In Figure 3.6, a Hann window hT and its power spectrum ||HT || are depicted. Exam-
ining the logarithmically plotted spectral energy distribution, the coefficients’ values decrease
with increasing frequency. Now we recall, that the convolution performed when filtering can
be expressed as pointwise multiplication of X and HT in the frequency domain. As depicted in
the latter figure, most of the high-frequency contents of a Hann-filtered signal will be damped.
This causes the desired smoothing of the filtered signal. Moreover, the filtering process has
also influence on the phase of the signal’s components. Thus, the temporal structure of a fil-
tered signal may vary significantly from the original. Given the smoothing applications of the
Hann window to be discussed in this work, the magnitude of this displacement is sometimes
neglected in a tradeoff regarding computation time and temporal accuracy.
Another FIR filter type frequently used in the following algorithms is the sliding mean or
averaging filter. Here, the basic idea is to replace each data point by a mean value of its
neighbourhood. Limiting the temporal range of this comparison, a sliding mean filter Ts,
considering a neighbourhood of s signal coefficients, may be expressed by its impulse response:

hTs := (1, · · · , 1) · 1
s
∈ Cs (3.22)

In the further text, an adapted version of this filter will be applied on a signal x ∈ CN . Note,
that the following filter is not time-invariant. Let s be sufficiently large and sh := bs/2c,
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then, considering the intention of a moving average, a more suitable solution will be referred
to as

s
x̄ (n) :=


Ts[x](n+ sh) · s

s−(sh+n) 0 ≤ n < sh

Ts[x](n+ sh) sh ≤ n < N − sh
Ts[x](n+ sh) · s

N−(n−sh) N − sh ≤ n < N

(3.23)

Here, an approximative lag of sh samples is reversed by time-shifting the whole averaged
sequence. Furthermore, the edge-effects of decreasing values are nearly balanced.

3.3.3 WFT and spectrogram

As the classical Fourier transform analyses the whole input signal, it yields mean values of
the included spectral components. Due to the importance of temporal variation in birdsongs,
we are however interested in a more localised representation. The basic idea of the windowed
Fourier transform is to break the signal into small, possibly overlapping short-time frames,
which are then analysed separately. These excerpts are isolated by a windowing function
g(t− t0). Usually, g represents a real-valued, even function centred at t = 0, that suppresses
the signal x outside a certain region, when x is multiplied by g. Let g ∈ `2(Z), ||g||2 6= 0,
be a window function with finite, non zero energy. For x ∈ `2(Z), the WFT is then defined
as the scalar product, defined in (3.3), of x and the windowed frequency signals gω,t0(t) :=
e2πiωtg(t− t0):

x̃(ω, t0) = 〈x, gω,t0〉 , for ω ∈ [0, 1]. (3.24)

In practical applications, (3.24) is transferred to a discrete-frequency version. Let g ∈ CN

denote a windowing vector, representing a windowing function having a support of sw = N
successive nonzero coefficients. Then, xt0 ∈ CN is defined as a vector containing the remaining
coefficients of the pointwise multiplication of x and g(t− t0),

xt0 := x(t)g(t− t0), for t ∈ {t0 + p, t0 + (p+ 1), · · · , t0 + q}, (3.25)

with

p = min{t ∈ Z | g(t) 6= 0},
q = max{t ∈ Z | g(t) 6= 0},

and q − p = N − 1. Now, with t0 ∈ Z and j ∈ {0, 1, · · · , N − 1}, the DWFT is defined as the
scalar product of the windowed signal and the sampled frequency signals:

x̃(j, t0) =
〈
xt0 ,DFTN (j, ·)>

〉
. (3.26)

In order to derive the desired spectrogram, the WFT is computed for equidistantly spaced
WFT-frame positions t0 ∈ {ts+n ·∆w | n ∈ N0}, where ∆w determines the step size and thus
the overlapping range of two successive windows (see Fig. 3.7). ts refers to the first window
position. As a matter of fact, both the time and frequency resolution of the previous transform
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are influenced by the window’s support’s length N in a competitive manner: as N grows, the
frequency domain is represented more precisely due to the denser sampling, while there are
more time domain samples contributing to a spectral coefficient. This has a negative effect
on time resolution. The windowing function’s shape is determining the above parameters,
too. According to the Heisenberg Uncertainty Principle, the Gaussian bell functions come
with an optimal tradeoff between localisation in the frequency and time domains, when used
as windowing functions. As the Gaussian window function has infinite support, suitable
approximations as well as more or less similar functions are used for practical purposes. In
this thesis, a Hann window function is used:

g(n) :=

{
0.5 · (1− cos(2π n

sw+1)), for 1 ≤ n ≤ sw,
0, otherwise.

(3.27)
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Figure 3.7: Amplitude plot of an 87 ms excerpt from a Grasshopper Warbler’s (Locustella
naevia) song. Hann window centered at t0 plotted as red, dashed curve. Some further WFT-
frame positions indicated by vertical lines.
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Figure 3.8: 1024 samples excerpt of windowed signal from Figure 3.7.

The stepwidth ∆w = sw
2 is set to half a window’s width to achieve an overlap of the same

length. Although the number of DFT coefficients is fixed at N = 2048 or 1024 samples, the
Hann window’s width sw and thus the excerpt of the input signal is allowed to be smaller than
N . In this way, components beyond a certain time position are neglected and the signal is zero
padded to a length of N coefficients. Thus, retaining N , one can control the time resolution
of the spectrogram by setting the window’s width. For example, the Savi’s Warbler detector
analyses only 320 samples per WFT-frame (see Fig. 3.8), corresponding to a frame rate of
fps = 300 frames per second, whereas the low time resolution achieved by using the full DFT
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size sw = N , corresponding to 50 frames per second, is sufficient for the detection of more
slowly developing melodies like in the Chaffinch’s song.

Since we are only interested in the magnitude of each spectral component, the squared absolute
values are calculated for each complex spectral coefficient. The phase information is discarded.
This representation is also called the power spectrum. Because of the almost logarithmic
magnitude perception performed by the human ear and in order to get a more dense energy
distribution, the natural logarithm is applied to the magnitude values. Thus, the influence
of a volume modulation decreases with the respective amplitude. We obtain a modified
spectrogram

specgr∗(j, k) := log
(
||x̃(j, ts + k ·∆w)||2 + 10−8

)
,

which is finally, for reasons of numerical stability concerning the further process, normalised
to a maximum value of 1, by using a factor c = max

j,k
(|specgr∗(j, k)|),:

specgr(j, k) := 1 +
specgr∗(j, k)

c
. (3.28)
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Chapter 4

Acoustical features

Specgram

Waveform Time anticipating
spectral feat.

Spectral feat.
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Adaptive band 
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Figure 4.1: Chart of feature dependencies.

As discussed in Chapter 2.3, the spectrogram derived above, facilitating a very rich depiction
of acoustic signals, is now used as a basis for the modelling of further representations. In the
following sections, several features will be defined, each measuring an individual aspect of the
acoustic signal. As the focus of this thesis is on birdsong recognition, the envisaged features
are designed to robustly measure parameters being characteristic for this task, while being
invariant up to noise and other irrelevant sounds.

The construction of these features, as depicted in the flow chart shown in Figure 4.1, is
divided in two parts: Firstly, the spectrogram is analysed by means of energy and shape
measurements. Furthermore, a coarsened, but also robust representation of the spectrogram
is derived. Moreover, the latter spectral features are concatenated in order to encode some
temporal information.

41
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In the second part, discussed in section 4.2, the introduction of novelty curves permits the
extraction of the even more robust, but also more specialized periodicity features. Here,
repetitive structures are extracted from the spectrogram, forcing the definition of a second
order frequency: the element repetition frequency. By means of the (adaptive) autocorre-
lation features, a quite robust representation of periodic acoustic events can be extracted.
Frequency-transforming the previous features, the novelty power spectrum features allow for
an additional denoising method. As each of the latter representations has been developed
for an individual application, the detectors, build upon the basic features established in the
following paragraphs, are meant to associate each feature with its respective scenarios.

4.1 Frequency bands and related features

For the applications described in this work, we will now focus our attention to one or more
frequency bands B0, · · · , BN−1. For many bird identification tasks, it is useful to focus on a
distinct frequency band, covering most of the frequency range which is used by the bird. In
this case, we only need a single band located between the indexes pl, ql for l = 0, defining the
bands minimum and maximum frequencies. These variables are set manually according to
some experimentally or statistically derived knowledge. In the following, the term frequency
band or band will refer to the set of spectral coefficients Bl := {j | pl ≤ j ≤ ql ∈ N0} belonging
to the chosen frequency range with limiting indices pl, ql. The first audio feature proposed
in this work measures a value proportional to the signal energy contained in a whole band.
This band energy feature is computed by frame-wise adding the assigned coefficients.

energy[Bl](k) :=
∑
j∈Bl

specgr(j, k). (4.1)
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Figure 4.2: 6-8 kHz subband of a monitoring recording. Top: spectrogram. Bottom: energy
plot as defined in equation (4.1).

Monitoring the band energy over time, one can detect sequences of high energy which may
indicate a significant event. Besides being used to generate a noise level estimate as described
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in [Fag04], the band energy feature may be combined with another standard signal process-
ing feature: the spectral flatness measure serves as an indicator for a homogeneous energy
distribution among the spectral coefficients. In general, the positive valued flatness measure
is given by dividing the geometric energy mean

B̆l := |Bl|

√∏
j∈Bl

specgr(j, k)

by the arithmetic mean

Bl :=
energy[Bl](k)

|Bl|
,

specflat[Bl](k) :=
B̆l

Bl
≤ 1. (4.2)
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Figure 4.3: Top: Spectrogram of a monitoring recording, with framed frequency band from
2-8 kHz, containing calls of the Common Swift (Apus apus). Bottom: comparison of shapes
of energy and ESF features.

Here, |Bl| counts the spectral coefficients associated to the frequency band Bl. Unfortunately,
the spectral flatness measure is very sensitive to outlying spectrogram values very close to
zero. In order to avoid the resulting feature outliers, some median filtering or other smoothing
should be performed on the specflat curve. The latter two features may be combined to build
an energy

specflat (ESF) feature indicating high overall energy concentrated in only a few coefficients.
Unfortunately, spectral flatness values are somewhat likely to be zero, and thus the above
definition fails. A more robust but similar ESF measure can be calculated as follows:

FESF[Bl](k) :=
energy[Bl](k)

|Bl|
· (1− specflat[Bl](k)). (4.3)

In this definition, the second term measures the roughness of a spectrogram vector. The
ESF feature is particularly useful for the detection of song birds, because many of their
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songs contain sine-like tones, which usually results in a significant ESF peak. In Figure 4.3,
the shapes of both the energy and ESF measurements are compared, using a signal with
alternating noise levels and sinusoidial bird calls. Both curves are normalised in order to ease
the comparison. In the middle part of the excerpt, some synthetic noise was added, which,
being equally distributed on all frequency bins, is only reflected by the energy measure.

4.1.1 Spectral features

In order to smooth out noise in the spectrogram, it is filtered with a two dimensional Gaussian.
The continuous Gaussian Hat signal is defined as

gauss(p, q) :=
1

2π
· e−

1
2

(p2+q2), for p, q ∈ R.

We use a sampled version, gaining a FIR filter with an impulse response displayed in the
following matrix: 

1 2 3 2 1
2 8 11 8 2
3 11 15 11 3
2 8 11 8 2
1 2 3 2 1

 (4.4)

The filtering is done using the fast convolution algorithm for image signals, described in Chap-
ter 3.3. Thus, simultaneously smoothing the spectrogram in the time and in the frequency
domain, grainy noise peaks are flattened out. We now focus on the frequency band which is
used by the bird. Therefore, the coefficients which do not contribute to the specific band are
discarded at this stage. Afterwards, the frequency resolution is reduced by pooling spectral
coefficients into #bins bins. This is done by triangularly weighted summation of successive
coefficients, which can be interpreted as a windowing procedure in the frequency domain. For
n ∈ N, the triangular windows of width sb are defined as zero-padded vectors WINT ∈ CN :

WINT (n) :=


2n
sb+1 if 1 ≤ n ≤ sb+1

2 ,

2(sb−n+1)
sb+1 if sb+1

2 < n ≤ sb,

0 otherwise, and

for sb even (4.5)

WINT (n) :=


2n
sb

if 1 ≤ n ≤ sb+1
2 ,

2(sb−n+1)
sb

if sb
2 + 1 ≤ n ≤ sb,

0 otherwise.

for sb odd

During the binning process, the window function is arranged at linearly increasing positions
f0 ∈ {fs + n∆b | 0 ≤ n < #bins}. The individual bins have an equal number of coefficients
sb =

⌊
|BL|
#bins

⌋
contributing to their value. Here, fs denotes the frequency band’s absolute offset.
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Figure 4.4: Illustration of all triangular windows used in the binning process. Each bin is
associated to a single triangular window.

A stepwidth ∆b is chosen to achieve an overlap of approximately sb
2 frames. The weighted

spectrogram coefficients are then summed up and saved in the spectral feature vector:

FSPEC(j, n) := 〈specgr(·, n),WINT (· − (fs + j∆b))〉 , (4.6)

for n ∈ Z and j ∈ {0, · · · ,#bins − 1}. Coarsening the WFT representation of an audio signal
as described above, we gain a suitable feature space. Usually, 30 to 40 bins are sufficient to
accomplish an adequate representation of a birdsong having a bandwidth of 3 kHz. Due to
the smoothing and binning operations, these features are strongly invariant considering fine
noise peaks and small frequency or amplitude variations, while representing the trend of more
continuous signals.

This representation can easily be enriched with information about the signal’s temporal evo-
lution. Incorporating the derivative of the single spectral bins over time is an easy way to
achieve such information, concerning two successive WFT-frames. In this work, some tempo-
ral information is added to the feature vectors by simply concatenating #anti + 1 successive
feature vectors:

F#anti
SPEC :=



FSPEC(0, k)
FSPEC(1, k)

...
FSPEC(n, k)

FSPEC(0, k + 1)
FSPEC(1, k + 1)

...
FSPEC(n, k + #anti)


, for k ∈ Z (4.7)

4.2 Periodicity features

Although the FSPEC and F#anti
SPEC features contain dense information about the analysed signal,

it is quite difficult to separate the signal contents from noise. Now concentrating on periodi-
cally reoccurring signals, we will propose a set of features which strongly suppress background
noise as well as nonperiodic signals while revealing the parameters of periodic signal sources.
Here, in contrast to the periodicity of the sine waves used for the Fourier transform, the term
“periodic” refers to the repetition of acoustic patterns within a time scale of approximately
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Figure 4.5: Top: 50 fps spectrogram of noisy Chaffinch stanza, frequency band: 4-8 kHz.
Centre: gaussian smoothed spectrogram. Bottom: frequency binned FSPEC features.
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Figure 4.6: Spectral features from example shown in fig 4.5 with additional time anticipation.



4.2. PERIODICITY FEATURES 47

25-250 ms. For the bird song identification task, in particular, the measuring of such periodic
elements reveals a set of useful features. The key tool used in the feature acquisition step is
autocorrelation. While the two dimensional cross-correlation measure is getting more popular
for comparing spectrogram excerpts, e.g. in the Avisoft SASlab and XBAT software, we use
an one dimensional autocorrelation measure comparing time-series for reasons of efficiency
and robustness, which will be discussed in detail in section 4.2.2.

4.2.1 Novelty curves

Reducing the multidimensional FSPEC features to a single scalar curve often involves dis-
carding information. Hence, the mapping used for this step has to be chosen carefully. The
method proposed below retains enough relevant information while discarding nondescriptive
parameters. The selection of an appropriate frequency band (see section 4.1) hence consti-
tutes an important part of this reduction process. As we are interested in the detection of
repeated elements in birdsongs, we will now focus on their limits: the onset and offset events.
To this end, we now extract a curve indicating the likelihood of these events. For each feature
vector FSPEC(·, n), the amount of introduced novel information is indicated by a correspond-
ing novelty value. Measuring the strength of spectral variation over time, the novelty curve,
plotted as blue curve in Figure 4.7, is a useful indicator for on- and offset events. A common
novelty measure is defined as follows:
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Figure 4.7: Top: excerpt from Chaffinch stanza (fig 4.5, page 46), using spectral features with
high time resolution (300 frames per second). Bottom: two novelty curves. Blue common
novelty measure on top of red FNOV↑ measure.

novelty(k) :=
#bins−1∑
j=0

|FSPEC(j, k + 1)− FSPEC(j, k)|. (4.8)

As this curve will be used to detect the periodic repetition of song elements, we want to
restrict our attention to just one type of events for the following reasons: many elements in
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bird sounds resemble short pulses or nearly vertical lines in the spectrum. The recordings of
such signals are likely to produce at least two novelty maxima, corresponding to the onset and
offset of the sounds. Unfortunately, in outdoor monitoring recordings, the energy decrease,
corresponding to the offset of an emitted sound, is likely to be blurred by echo and reverb
effects naturally occurring in this scenario. In the spectrogram shown in Figure 4.7, these
effects fill the spaces between the single elements. In this work we will hence use a modified
novelty measure which solely reflects the events corresponding to increasing energy. Thus we
get maxima for the onsets of the mentioned sounds (see Fig. 4.7), by defining

FNOV↑(k) :=
#bins−1∑
j=0

max(FSPEC(j, k + 1)− FSPEC(j, k), 0). (4.9)

Many birdsongs contain phrases of relatively long elements resembling short sine sweeps. Usu-
ally, these sounds result in plateau-like novelty curves. This is because of the constant energy
increase in the coefficients corresponding to a monotonically in- or decreasing frequency. Given
a scenario in which the frequency range of a searched-after call is known and fixed, it is useful
to analyse a small band Bl, centred at the upper or lower bound of the songs frequency range.
This usually leads to more distinct novelty peaks. In some of the applications considered in
the subsequent chapters, the novelty curves are calculated for a set of even smaller subbands
S(Bl)0, · · · , S(Bl)M by subdividing the frequency band Bl, to minimize the plateau’s width
and hence to sharpen the novelty maxima. In Figure 4.8, #sbands = 9 subbands covering a 4
kHz frequency range are extracted, gathering about 8 spectral coefficients per subband, and
choosing #bins = 40. The center frequencies of the subbands are arranged linearly and the
whole bands frequency range is covered by the set. Because of their small bandwidth, the
subbands are only contributing to a subsequence of a full bandwidth sweep-like sound and
therefore are likely to contain shorter novelty plateaus.

The onset novelty curve explained above yields robust features which constitute the basis to
the further processing step. Especially the invariance up to mid- and long scale amplitude
trends is of major importance for the overall detection robustness. As the novelty features
are quite sensitive to fine spectral noise, the gaussian filtered FSPEC features are well-suited
as a basis for this extraction process.

4.2.2 Autocorrelation

Finally, the signal is tested for periodic events. Considering the novelty curve, these events
are represented by a train of equidistantly spaced local maxima. As the period of these
maxima is not known a priori, we have to check for a set of relevant period values. This is
achieved by the use of the statistical autocorrelation measure, a tool frequently applied in
signal processing which measures the cross-correlation of a signal with itself. For x ∈ `2(Z),
the autocorrelation measure can be easily defined as

acorrx(τ) :=
∑
k∈Z

x(k) · x(k + τ), for τ ∈ Z. (4.10)

This process might be depicted as follows: the signal x is copied to x′, and both signals are
arranged on two parallel timed tracks. To test for the zero-time (τ = 0) periodicity, the
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Figure 4.8: Top: spectral features of a Chaffinch’s stanza. Bottom: FNOV↑ novelty curves
for 9 overlapping subbands. The curves’ ranges have been individually normalised for better
visibility.

two sequences are compared in a pointwise manner: Each pair of temporally corresponding
(same horizontal position) novelty values is multiplied. The sum of the former products thus
serves as a similarity measure. Now, the signal copy x′ is WFT-frame wise time-shifted, and
the above similarity measure is successively calculated for all interesting shifts or lags τ . A
high acorrx(τ)-value indicates a high self-similarity of the signal, and thus an approximate
self-repetition of the signal within a lag of τ . The above measure can be mathematically
expressed and computed by convolving the signal with a reversed copy of it.

acorrx(τ) = (x(·) ∗ x(−·))(τ) (4.11)

Due to this fact, it is also possible to replace the convolution operation by a scalar multi-
plication in the frequency domain (see equation (3.8) and following). As we are interested
in a more localized autocorrelation measure, depicting periodicities within a 300 ms range, a
window based short-time autocorrelation procedure is used. This short-time autocorrelation
is applied on successive, windowed excerpts of the input signal. Here, we use a rectangular
window of width sac, corresponding to signal excerpts of sizes between 10 ms and 500 ms.
Depending on the required temporal resolution, the step size ∆ac, interleaving the center
positions of two successive windows, is chosen to obtain approximately 15 ≤ fpsac < 320
autocorrelation vectors per second. In the following, these will be called autocorrelation se-
quence. Obviously, the windowed signals x ∈ RN , for N = sac, are time-limited, which turns
out to be problematic. As the signal is time shifted during the autocorrelation process, we
have to expand the copied signal excerpt in order to derive correlation values beyond τ = 0.
Here, additional coefficients x(n), for N ≤ n < 2N , are needed. In Figure 4.9, three different
approaches are depicted: zero padding a signal copy x′ ∈ R2N , as described in (3.16), comes
with disadvantages as a continuous fall off of the values that corresponds to larger autocor-
relation lags (see bottom blue curve). Another method is to expand the window size sn for
the signal copy, thus gaining more information at the cost of temporal focus, as shown in the
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black, dashed curve. The autocorrelation is calculated using

acorr′x(τ) :=
N−1∑
k=0

x(k) · x′(k + τ), for τ ∈ {0, 1, · · · , N − 1} (4.12)

In this work, extending the signal by means of simple repetition has proven as the most
promising approach. The cyclic autocorrelation measure, being defined by
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Figure 4.9: Top: excerpt of above FNOV↑ novelty measure. Bottom: comparison of different
autocorrelation measures, top-down: 2N -cyclic autocorrelation (in red). Correlation of signal
x and double length excerpt x′ (in dashed black). Autocorrelation using a zero padded copy
x′ (blue).

acorr◦x(τ) =
N−1∑
k=0

x(k)x((k + τ) modN) (4.13)

⇔ (x(·) ∗N x(−·))(τ),

for x ∈ RN and τ ∈ {0, · · · , N − 1}, is used. This procedure leads to major improvements
in temporal resolution and computational costs: first, only signal values covered by the ac-
tual window position are used. This is particularly useful for the following reason: although
some animal sounds contain very precisely timed periodic elements, the possibility for small
deviations, leading to blurred autocorrelation curves, increases with observation time. Con-
sequently, shortening the autocorrelation window results in sharper features. Moreover, the
usage of the fast Fourier transform leads to a significant speedup in convolution time. Because
of the signal padding mentioned above, and the use of the convolution workaround described
in Chapter 3.3.1, an FFT of length 4N is necessary to compute the expanded signal’s auto-
correlation (4.12). Exploiting the fact that DFT-based convolution is naturally cyclic, (4.13)
is calculated using a FFTN . As the cyclic autocorrelation of x ∈ RN , due to the periodicity
of cyclic convolution, is N -periodic and, as an effect of the convolution with itself, symmet-
ric at τ = N

2 , only N
2 of the coefficients contain valuable information. In order to acquire
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autocorrelation values for lags 0 ≤ τ < N , we autocorrelate signal excerpts of length 2N , as
depicted by the top red curve in Figure 4.9.

The actual length sac of the autocorrelated vector is determined by the framerate fps and the
maximal period to be detected. As explained above, using a window size of sac = 2τ+1 yields
autocorrelation coefficients for lags up to the desired period. An autocorrelation window twice
this period’s length is bound to contain up to two of such periodic elements. These usually
only provide a weak basis for the measurement of periodics. Thus there usually is a tradeoff
between a long autocorrelation window, leading to more robust autocorrelation measures,
and the decrease of the curve’s sharpness. In this thesis, a frame rate of fps = 300 WFT-
frames per second and an autocorrelation length of 64 to 128 WFT-frames is used, to capture
the 50 Hz periodics of Savi’s Warbler, although the autocorrelation using a window length
of smin

ac = 2 · fps
50 = 12 would still contain the lags associated to the desired period. In our

other subsequently introduced detectors, a FFT-length of N = 256 samples is used for the
convolution, revealing autocorrelation coefficients for lags between −128 ≤ τ < 128 samples.
In order to discard the symmetric components, the features only contain information on
positive lags for τ ∈ {0, · · · , N2 −1}. Assuming a stepwidth ∆ac, the autocorrelation sequence
for novelty curves x ∈ `2(Z) is defined as

FACORR(τ, k) = acorr◦xk(τ), where (4.14)

xk := (x(tk), x(tk + 1), · · · , x(tk + sac − 1))>

denotes the signal excerpt after pointwise multiplication with a rectangular window, which is
aligned at position tk := ts + k ·∆ac. For each individual ACORR-frame, the autocorrelation
curve is then normalised to a maximum value of 1. This is done for several reasons: As
the maximum autocorrelation value, corresponding to the signal’s energy, is contained in the
zero-lag autocorrelation, the FACORR(·, k) curves are weighted by the squared novelty sum of
frame xk,

F norm
ACORR(τ, k) =

FACORR(τ, k)
FACORR(0, k)

. (4.15)

This normalisation will preserve the information about periodic elements occurring in the
analysis window xk, while dismissing the overall signal’s strength. Thus, the normalised
autocorrelation features are quite invariant up to the overall signals strength. Although
the depicted autocorrelation curves will further on depict the zero-lag autocorrelation to
have major energy, the reader is suggested to focus the attention on the remaining local
autocorrelation maxima. Such normalisation furthermore is a simple measure to make the
FACORR data accessible to further learnable classificators using Gaussian Mixture Models
(GMM’s) as discussed in Chapter 5.4.2.

In Figure 4.10, the normalised autocorrelation sequence of a Chaffinch stanza is depicted.
Following the first autocorrelation maxima through the whole sequence, one can easily see
that the position or index of the respective maxima also approximates the temporal distance
of the birdsong elements depicted by the above spectral features. Furthermore, the resulting
subsequences of very similar autocorrelation vectors clearly reflect the phrase structure, being
sung by the targeted bird. Surely, this nature of the autocorrelation sequence will be exploited
in the structure extraction Chapter (5.4.1). The FACORR and F norm

ACORR features are quite
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Figure 4.10: Top: spectral features of the Chaffinch stanza example. Bottom: F norm
ACORR

features derived from these features. Although the features are derived with a stepwidth of
a single frame (fpsac = 300), the window size of (N = 256) samples used for the N -cyclic
autocorrelation causes the reduced amount of data.

robust concerning noisy novelty curves, because peaks associated with signal noise seldom
appear at constant time intervals. Thus they do not accumulate during the calculation of
FACORR(τ) values, as a periodic signal would do. Countermeasures concerning periodic noise
will be discussed in Chapter 4.2.7. Another useful property of the autocorrelation measure
is that, besides indicating a fundamental period of a periodic sequence, multiples nτ, n ∈ N
of this estimated period are likely to have high autocorrelation values. In such a case, the
assumption of an analysed sequence containing more than two uniformly spaced elements
is substantiated. Thus, this sequence is to be considered to contain a periodic signal. The
number of those additional local maxima is bounded by the length of the autocorrelated signal
and the maximum multiple of the fundamental period fitting into the ACORR-frame. Given
an appropriate parametrisation for the FACORR features, a sequence containing c element
repetitions usually produces FACORR-peaks at positions {nτ | 1 ≤ n < c}.

4.2.3 Autocorrelation sharpness

Although containing robust information about periodic elements, the FACORR and F norm
ACORR

features fail to deliver any information concerning the signal’s volume or signal-to-noise ratio.
Unfortunately, this leads to false period detections in quiet, noise-dominated signals. As this
kind of signal is frequently recorded during late night monitoring sessions, one must find
another useful feature, providing helpful information concerning the mentioned properties,
which can be combined with the above autocorrelation features. The considered measure
should also be invariant up to the absolute signal level, as, sometimes, the signal gain changes
during the monitoring recording. An useful indicator, measuring the ratio between periodic
signals and non-periodic noise, is the Autocorrelation sharpness. This feature is derived from
the Spectral flatness measure (4.2), which is an indicator for a homogeneous distribution of
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energy in the spectrum. Applying the specflat measure on autocorrelation curves, we need to
calculate the mean autocorrelation coefficient

FACORR(k) :=
∑sac−1

τ=0 FACORR(τ, k)
sac

and the geometric mean:

˘FACORR(k) := sac

√√√√sac−1∏
τ=0

FACORR(τ, k)

Thus, autocorrelation sharpness is defined as

FACSHARP(k) := 1−
˘FACORR(k)

FACORR(k)
. (4.16)

It is easily proven that the above measure for all k is bounded by 0 ≤ FACSHARP(k) ≤ 1.
The normalisation used in (4.15) does not affect the above measure. Hence, the FACSHARP-
measure may be derived from the normalised autocorrelation features, alternatively. A high
autocorrelation sharpness value indicates the signal’s energy being concentrated in a single
sequence of periodic elements.
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Figure 4.11: Demonstration of the FACSHARP feature: Left: spectrogram containing six sec-
onds of a strong Savi’s Warbler’s song. Top right: autocorrelation sequence of the frequency
band (3.5-5 kHz). Bottom right: associated autocorrelation sharpness measure. In the spec-
trogram, the very fast (50 Hz) element repetition of the bird’s song is blurred.

4.2.4 Abp-features

Although, for some applications, calculating a single novelty curve and autocorrelation series
may be sufficient to obtain an description of the occurring periodic elements, our experiments
have shown that this usually is not the case with undirected monitoring recordings. These,
naturally containing lots of coexisting sounds and noise, usually produce suboptimal novelty
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and autocorrelation results. In order to get a series of more sharp autocorrelation curves,
we apply a subband autocorrelation strategy: at first, the analysed band Bl is splitted into
subbands S(Bl)m, for m ∈ {0, 1, · · · ,#sbands − 1}. The frequency ranges of these bands are
designed to overlap each other about a half of their bandwidth. For #sbands = 5 or 9, and
#bins = 30, each subband is associated to ∆sb = 10 and 6 spectral feature bins, respectively,
corresponding to the following coefficients:

S(Bl)m := {j + bm · ssbc | 0 ≤ j < ∆sb}. (4.17)

Here, the stepwidth is set to ssb = 3 for 5 subbands, and ssb = 5 for a division into 9
bands. In a next step, the subband novelty curves are derived, and a F norm

ACORR sequence is
computed for each subband. The final autocorrelation sequence is now composed of these
sequences in the following manner: for each ACORR-frame k, we choose one of the #bins

alternative autocorrelation curves. To this end, we use the Autocorrelation sharpness measure
FACSHARP to define a quality ranking of these curves on a frame-wise basis. In prior to the
selection, the resulting autocorrelation sharpness curves are smoothed by means of convolution
with a Hann window, as defined in (3.27). For each frame, the sharpest autocorrelation
curve is then selected and saved into the mixed autocorrelation sequence. For the case of
three subbands, this is depicted in Figure 4.12. Let F norm

ACORR[m](τ, ·) and FACSHARP[m](·)
represent the normalised autocorrelation sequence and autocorrelation sharpness curve of
subband S(Bl)m. The adaptive band periodicity features FABP are then formally defined as

FABP(τ, k) := F norm
ACORR[Mk](τ, k), (4.18)

with Mk := arg max
m

(FACSHARP[m](k)) . (4.19)

Spectral features 
and subbands

Subband autocorrelation
curves

Autocorr. 
sharpness

choose sharpest 
curve

abp-Feature

Figure 4.12: Extraction of an FABP frame. Here the autocorrelation of the topmost subband
has a superior autocorrelation sharpness value.

As the subband indices Mk (see top of Figure 4.13) solely depend on the FACSHARP[m](k)
features of a single frame, the resulting index sequence may contain frequent index changes
caused by noise or single bad FACORR curves. The resulting FABP-sequence is likely to
contain many unintended discontinuities between adjacent signal frames, which should be
avoided. Such distortions are minimised by the preliminary smoothing of the FACSHARP[m](·)
feature sequence. There are also examples for intended band index changes. E.g., the typical
Chaffinch’s stanza contains several phrases, consisting of elements with different spectral
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bandwidths. In the optimum case, the subband index sequence (Mk) should remain stable
for inner-phrase frames whereas the index changes are located during frames containing a
phrase-transition. The Hann window’s width should be chosen to be compatible with the
typical phrase structure of the song to be detected. Otherwise, an oversized window will
result in delayed or even skipped phrase transitions. This would contradict the adaptive
design of the desired features.
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Figure 4.13: Example continued from figure 4.8 (p.49). Top: spectral features. For each
frame, the subband index Mk, corresponding to the highest FACSHARP measure, is indicated
through a black cross (see Equation 4.19). The highlighted areas correspond to the data con-
tributing to the autocorrelation windows. Middle: FACSHARP measures for all subbands, blue
colours correspond to low, red refers to high values. Bottom: Resulting FABP autocorrelation
sequence.

Thus, as depicted in Figure 4.13, we obtain a sequence of the sharpest autocorrelation curves,
expressing the pitches contained in the respective subband. A comparison of both the com-
mon and enhanced autocorrelation sequence can be found in Figure 4.14.As these curves are
substituted for the FACORR features, representing a whole band’s periodics, one has to choose
that band’s borders quite carefully. If an oversized bandwidth is chosen for Bl, the possibility
of expressing the periodics of unintended signals is significantly higher. Usually, this band is
of adequate size if it at least partially covers the frequency range of all expected elements. Full
containment is not required. Assumed that most of the expected bird sounds have a band-
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Figure 4.14: Comparison of autocorrelation sequences. Left: adaptive band periodic (FABP)
features. Right: FACORR autocorrelation sequence.

width at least of the chosen band’s size, the selected autocorrelation curves of the subbands
will contain a sharper representation of the periods while including the information about
the periodic elements we are looking for. With focus on the processing time, the procedure
consumes at least #sbands times the CPU time needed to extract an ordinary FACORR feature
sequence for calculating the subband autocorrelation curves and FACSHARP features.

4.2.5 Reducing the dimension of autocorrelation data

In order to make the information contained in the autocorrelation features accessible to un-
supervised learning algorithms, the original dimensionality of the F norm

ACORR features may have
to be reduced. This is particularly the case for the Expectation-Maximisation (EM) strategy
used to estimate a hidden Markov model in section 5.4.2. The methods used for this reduction
are outlined in the following.

As a first step, the autocorrelation curves are shortened to contain the minimal range of
lags being sufficient to contain the desired periodics. Now, two different approaches can be
used to achieve a further reduction of dimensions: downsampling the autocorrelation curves
comes with a coarsening of the distinct repetition periods. On the one hand, this helps the
generalisation needed to build a robust model, whilst, on the other hand, excessively coars-
ening the lag scale may eliminate most of the information inherent to these autocorrelation
curves. Furthermore, reducing the sample rate of these curves implies a reduction of the
highest representable frequency. In the experiments performed for this work, autocorrelation
curves are computed from spectral features with high temporal resolution (fps = 150). Now,
the maximum lag is defined as 59 WFT-frames, corresponding to an element repetition rate
of 2.6 Hz. Downsampling the autocorrelation curves by a factor of 5 leads to a coarse repre-
sentation contained in 12 coefficients, roughly capturing periodics from 2.6 to 15 Hz. Figure
4.15 displays this change in lag resolution. Being derived from the previous example, the
sequence’s temporal resolution still amounts to 300 frames per second.

Another popular dimension reduction technique is given by the Principal Component Analysis
(PCA). The PCA of a data set defines an orthogonal transform providing a decomposition
of the data, where the variance, and thus the information enclosed in the first n components
is always maximal. A popular technique is then to discard some of the last coefficients of
the transformed data, carrying small information on the whole data set. However, the new
base vectors, and thus the transformation matrix, depend on the initial training data set.
Thus, vectors not contained in the training data are likely to be badly represented by the new
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Figure 4.15: Dimension reduction of autocorrelation sequences. Left: adaptive band periodic
(FABP) features. Right: 10 times downsampled FABP features.

base. In case of the training data containing autocorrelation sequences from one or several
Chaffinch songs, just a subset of all relevant autocorrelation curves is contained. Although our
experiments showed a reasonable representation of the initial data set, even when only using
the 5 first coefficients of the transformed data, stanzas of new individuals were represented
very poorly, due to the slightly differing periodics.
Thus, for the experiments described in this work, being aimed at a general model covering
the songs of multiple unknown individuals, the resampling approach seems more promising.
However, for applications concerned with the representation of the stanzas of a single indi-
vidual, the PCA might perform quite well by reducing the redundancy inherent in the plain
autocorrelation curves.

4.2.6 Fourier transformed autocorrelation curves

On the one hand, as described in Section 4.2.2, the autocorrelation sequence already con-
stitutes an intuitive representation of periodic elements.On the other hand, however, it also
contains some redundancy, caused by τ -periodic elements having multiple repetitions, though
producing repeated autocorrelation maxima.By transforming the autocorrelation curves into
the frequency domain, this redundancy is utilised to get a robust representation of the pe-
riodic elements’ frequencies. As the additional peaks are located at equidistant positions
{nτ | 1 ≤ n < c}, the subsequent fourier transform reproduces this periodicity as a single
peak, e.g. attributed to the cosine curve cos(2π t

n). In comparison to the autocorrelation
curves, the envisaged kind of representation (see Fig. 4.16) features a greater accessibility to
an intuitive comprehension. Prior to the fourier transformation, in order to minimize alias-
ing effects being caused by high autocorrelation values at the ultimate lags, the curves are
pointwise multiplied with a Hann window of the same length, as described in Section 3.3.3.
Now, a fast Fourier transform (e.g. of length sps = N = 256) is performed. To fit the FFT
size, the windowed FACORR- or FABP-features are padded with zeros.

FNPS(·, k) := DFTN F̃ABP(·, k), (4.20)

where F̃ABP(τ, k) :=

{
g(τ) · FABP(τ, k) 0 ≤ τ < sac,

0 sac ≤ τ < N.

Here, N > sac is assumed. g(τ) refers to the Hann window defined in Equation (3.27) and
sac denotes the length of an autocorrelation vector. For the general autocorrelation measure
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defined in (4.13), this procedure leads back to the power spectrum or absolute value of the
Fourier transformed novelty curves:

DFTN acorr◦xk(·) = DFTN IDFTNXk ·Xk

= Xk ·Xk

= ||Xk||2.
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Figure 4.16: Novelty power spectrum features comparison. Left: spectrogram containing
Savi’s Warbler’s song. Boxes specify the feature band (upper band) and the flanking band
(dashed). Top right: FNPS novelty power spectrum features. Bottom right: denoised F−nois

NPS

features, using the flanking band.

Note that Xk represents the DFT-transformed excerpt xk of a novelty curve. In the following,
the FNPS features will be referenced as novelty power spectrum (NPS) features. A major
advantage of the features proposed in (4.20) is the easy way they can be interpreted: a peak
at position FNPS(f, k) indicates a likely periodicity with an element repetition frequency of
f
sps
· fps Hz. Unlike the autocorrelation features, there are no subharmonics (e.g. at positions

{ f2n | n ∈ N}) contained in the FNPS features. The first fourier coefficient contains the mean
autocorrelation energy, which will be of no further use in this thesis.

4.2.7 Cancellation of periodic noise in FNPS features

In many applications, knowledge about the expected frequency range of a particular animal is
an important prerequisite to the identification task. In this section, utilising such knowledge,
information about periodic background noise is gathered. A flanking frequency band near,
but surely disjunct to the birds typical frequency range is analysed for periodic elements,
and FNPS features are extracted. Now, broadband background signals present in both the
flanking band and the birds band are removed from the latter band’s features by means of
subtraction. Let FNPS[b] and FNPS[f ] contain the power spectrum features of the bird’s and
the flanking band signals. The denoised F−nois

NPS features are then defined as
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F−nois
NPS (j, k) = min (FNPS[b](j, k)− FNPS[f ](j, k), 0) . (4.21)

In Figure 4.16, a monitoring signal containing a Savi’s warblers song and several calling tree
frogs is analysed using the features introduced above. In the top right image, the novelty
power spectrum features are plotted against an element repetition frequency. As the under-
lying spectral features are derived using a frame rate of fps = 300, the ultimate detectable
frequency determining the repetition of the bird’s song’s elements is bound to 150 Hz, corre-
sponding to an autocorrelation maximum at the lag of τ = 2. Note that this frequency is not
to be mistaken as the spectrogram’s frequency. The element repetition frequency indicates
a probability for the repetitive occurrence of acoustical events being visible in the spectro-
gram. In this example, the ACORR-frame rate of the Savi’s Warbler detector is used, saving
computation time by reducing the framerate to fpsac = 15 autocorrelation curves, resulting
in the same amount of FNPS features per second. The bottom right image displays the de-
noised power spectrum features, using the frequency band between 1 and 2.5 kHz as flanking
band. Comparing the latter image with the former FNPS features, the signal to noise ratio
has clearly been improved. Usually, situating the flanking band below the bird’s band is quite
secure, because, as our experiments have shown, harmonics, evolving from the bird itself or
machine-induced distortion, as well as other correlated song components, are likely to distort
the upper frequency bands. Especially when working with high noise levels, the detection of
such a complementary band is a challenging task.

Before discussing the actual detectors, the reader may reconsider the feature dependency
chart which is also displayed the beginning of this chapter.

Specgram

Waveform Time anticipating
spectral feat.

Spectral feat.

Energy

Spectral flatness

Novelty Autocorrelation feat.
Autocorrelation 
sharpness feat.

Adaptive band 
autocorrelation feat.

Novelty power 
spectrum feat.

Denoised 
novelty power 
spectrum feat.

Energy/Specflat
feature

Part 1 Part 2

Figure 4.17: Reminder: chart of feature dependencies from Chapter 4.
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Chapter 5

Signal classification and birdsong
recognition

In this chapter, the features described in the previous chapters will be used to solve several
classification tasks. Considering bird song recognition, there are several modes of classification
to be discussed. Building a binary classifier for the decision whether a selected signal segment
contains a song of a specific species or not seems to be a good start. In this case, the audio
data needed for evaluating and eventually training the classifier is not required to contain
less recordings of other bird species. In the case of bird recordings, this is a clear advantage,
because there are few annotated monitoring recordings available and manual annotation turns
out to be quite time-consuming and therefore too expensive.

The two main detectors to be discussed in this chapter use an extensive as well as diverse
set of signal processing and pattern recognition techniques. Fortunately, most of these tech-
niques can be grouped at distinct levels of abstraction. In order to obtain a comprehensible
structure, the following sections are ordered by means of paradigms. In fact, both of the de-
tectors are explained in two steps. The descriptions of the preselection routines are combined
in Section 5.2, which discusses a “prefiltering” paradigm. Here, the topics of interpreting
one-dimensional features measuring energy or spectral flatness, as well as the matching of
spectral feature sequences using Dynamic Time Warping, are covered. Thereafter, Section
5.3 approaches the main detection routine of the Savi’s Warbler detector. Section 5.4 moti-
vates the use of advanced birdsong models through the detailed description of the Chaffinch
detector’s classification routine. Providing the essential superstructure of the named detec-
tors, the next section follows with motivational character.

5.1 Overview for Chaffinch and Savi’s Warbler detectors

Monitoring
signal

Flourish
candidates

Stanza
candidates

Phrase
candidates

Detector
outputTemplate

matching
Segmentation Model

evaluation

Sec. 5.2.2 Sec. 5.4.1 Sec. 5.4.1

Figure 5.1: Overview of the Chaffinch detector.
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Detecting the Chaffinch As described in Chapter 2.4, the Chaffinch’s song has a charac-
teristic flourish at the very end of almost each stanza. Motivated by this fact, the first step in
the Chaffinch detector is to detect elements which are possibly representing such a flourish.
This is achieved by searching for a set of spectral feature templates, representing a couple of
typical flourishes. The searching procedure uses a DTW-based distance measure to identify
possible flourish candidates in the record to be analysed. Once extracted, the latter segments
can be grouped into clusters of similar flourishes.

Now, the FABP autocorrelation features are used to extract an element repetition period for
each ACORR-frame. Being computationally expensive, this procedure is only applied on
stanza candidates attached to the above candidate flourish segments. Now, separately pro-
cessing each stanza candidate, the knowledge gained from the Chaffinch stanza segmentation
study (Chap. 2.4.2) is used to implement a Chaffinch song model: at first, a segmentation is
performed on the sequence of repetition periods, extracting segments with parameters similar
to Chaffinch phrases. In a second step, several conditions are checked concerning the temporal
localisation of the extracted segments. The application of both of the previous steps can be
interpreted as the comparison of the candidate to a Chaffinch stanza model, imposing several
conditions on the parameters of the contained phrases (see Figure 2.7, p.20 for terminology).
In case that all conditions are fulfilled, the candidate is classified as Chaffinch and given a
ranking value.

Monitoring
signal

Warbler
candidates

Detector
outputEnergy

segmentation
Parameter
evaluation

Sec. 5.2.1 Sec. 5.3.1

Figure 5.2: Overview of the Savi’s Warbler detector.

Savi’s Warbler detector Similar to the above procedure, a preselection routine is per-
formed prior to the expensive classification. For the Savi’s Warbler detector, the time-varying
energy curve of the bird’s typical frequency band is extracted. Using a special segmentation
routine, signal parts of major energy are extracted until a sufficient amount of excerpts is
gathered. This procedure reflects the fact of the targeted bird singing for long periods. Here,
though only analysing the most promising excerpts, the detection of a singing individual is
still likely. When evaluating the overall stanza duration of these birds, the preselection step
may be omitted at the expense of computation time.

The main classification routine of the discussed detector uses an adaptation of the denoised
novelty power spectrum (F−nois

NPS ) features, providing 5 parallel streams of denoised features.
Then, in particular two essential features, measuring the element repetition period as well
as the presence of the allegedly periodic signal, are extracted on an ACORR-frame basis.
Frames not fitting the expected values for these features are discarded from further processing.
Finally, a cascaded segmentation is performed on the residual frames, delivering segments to
be classified as parts of Savi’s Warber songs. Also, a ranking value is attached to each of
these segments.
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5.2 Directing the search via segment preselection

As some of the detectors presented in the subsequent sections are quite expensive from a
computational point of view, we introduce a two stage approach for these detectors: in the first
stage, interesting segments are extracted. These segments are selected by a computationally
cheap classifier, whose decisions are based on low-level signal measurements. Afterwards, the
second classifier is used to decide on whether the preselected segments contain the sought-after
bird songs or not. Usually, signal excerpts only reference a small part of the whole signal.
Thus, the second and most expensive part of the computation is performed on a reduced data
set. Depending on the actual signal source and low-level measurements, this approach saves a
lot of time. As the first classifier is not expected to perform an accurate detection of a specific
bird species, its false positive rate is allowed to be very high. On the contrary, the number of
stanzas being falsely sorted out at this stage has to be minimized. Otherwise, many segments
will remain false negatives without a possible and costly third (re-) classification stage. Such
a three-stage classification approach, where an adapted classifier is used to re-classify the
whole signal, will not be discussed in this work.

Because, as described above, the false negative rate of the first classificator is critical for an
accurate overall performance, the two-stage approach should not be used where quantitative
values, such as the detection rate per hour, are of interest. The Savi’s Warbler detector was
initially designed to extract reference segments, to be used as proof of presence of a Warbler’s
song, from recordings usually longer than one hour. These segments are used as proof for the
presence of the bird in the surrounding area of the recording microphone. In this scenario,
the proposed preliminary extraction of candidate segments is quite useful.

5.2.1 Energy and spectral flatness features

Savi’s Warblers Energy classificator The band energy feature described in equation
(4.1) is a cheaply computable feature. In the Savi’s Warbler detector, an energy measure is
used as an indicator for acoustic events within the Warbler’s typical frequency band. As the
Warbler’s song is likely to raise the bands signal energy, we will extract areas of high energy
as interesting segments. Thus, the first step in the respective detector is to use an adaptive
threshold criterion for the extraction of such segments. The segmentation is performed as
follows.

At first, an energy curve of the frequency band in the range of 3,5 to 5 kHz is calculated. Now,
for reasons of memory management, this curve is downsampled to a sampling frequency of 2
Hz. In order to minimise the aliasing effects associated with this procedure, the energy curve
is low-pass filtered in advance. The resampled signal is then cleaned from local discontinuities
by means of applying a median filter. The filter has a length of 3 samples.

medfiltx(n) :=

{
median{x(n− 1), x(n), (n+ 1)}, for 1 ≤ n < N − 1,
x(n), otherwise.

(5.1)

The following segmentation algorithm is designed to extract at least an eighth of the input
signal’s length as interesting segments. These are selected to contain relatively high energy
measurements. Thereby, the length of these segments and the steadiness of the energy curve
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inside the segment boundaries are maximized. This procedure is motivated by the fact of
Savi’s Warbler’s stanzas being quite steady and long. The algorithm described below is
designed to be used with signals which are longer than one hour. As the Savi’s Warbler
is likely to sing for a long time, easily exceeding 20 minutes, the minimum excerpt length
mentioned above is sufficient for a general detection of the bird’s song. In a first step, we try
to extract rather long and very steady segments from the signal. If the cumulative length of
the extracted segments does not suffice the length criterion mentioned above, the thresholds
determining the minimum segment size and signal steadiness are lowered. Again, the yet
unsegmented parts of the signal are processed in the same manner as described above. Thus,
the set of candidate segments is enlarged during each iteration. This procedure is repeated
until either a sufficient cumulative segment length is achieved or, regarding the segment size,
a minimal length threshold is reached.
For the description of the actual algorithm, we need to define segments and sets of segments:
a segment u constitutes a pair, containing the sample positions of its first and last constituting
time index: u := (f, l), f, l ∈ Z. As the segmentation is based on the energy curve, the 2 Hz
sampled frames will serve as the unit of reference. Now, the segment set S will be used to
gather the detected interesting segments, while the set U will keep the unsegmented rest. The
steadiness of an energy vector x ∈ CN mentioned above is approximated using an averaging
filter of variable length s as defined in Equation (3.23). The filtered signal expresses the mean
signal energy measured in a fixed time window. Now, for n ∈ {0, · · · , N − 1}, we define the
binary decision vector

goodpossx(n) :=

1 if medfiltx(n) > 0.98
s

medfiltx (n),
0 otherwise,

(5.2)

indicating an energy sample exceeding a fixed steadiness threshold. When analysing a mul-
tichannel recording x[c](n), e.g. for c ∈ {0, · · · , 3}, the filtering is applied on each of the
individual channels, delivering the decision vectors goodpossx[c](n). Afterwards, the results of
the above criterion are combined by means of logical disjunction:

goodpossx(n) =
∨
c

goodpossx[c](n).

The actual implementation follows Algorithm 1. In line 17 of this algorithm, the operator \∗
is used in a non-standard way, as shown in Figure 5.4: actually, in U = U \∗ (p, q), the segment
(fi, li) containing the time positions (p, q) is identified. Then, this segment is split into two
new segments (fi, p − 1) and (q + 1, li). The initial segment (fi, li) ∈ U is now replaced
the two new segments. If one of these segments is to short, it is omitted. The resulting
segmentation is depicted in Figure 5.3, showing a 4-channel recording’s energy curves. In the
second classification stage of the Savi’s Warbler detector described in Section 5.3, only the
segments contained in the set S are processed. In the case of S remaining empty, the first 10
minutes of the monitoring signal are classified.

Spectral flatness indicator. The band energy segmentation algorithm can also be applied
on a FESF feature as described in (4.2). Here, the segments derived in S are also interpreted
as interesting segments, which are likely to contain a birds song or call. A modified version
of this approach is used for the audio summarisation algorithm proposed in Section 5.2.3.
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Algorithm 1: Extracts candidate segments for the Savi’s Warbler detector. At first,
relatively large segments with high energy are extracted. Each iteration, the size of the
extracted segments is decreased.

Input: medfiltx(n) for n ∈ {0, · · · , N − 1} ; /* median filtered signal */
Output: S ; /* segment set */
s = 5 · 60 · 20 ; /* size of steadiness window: 5 minutes */1

S = {};2

U = {(0, N − 1)};3

while cumulative segment time < N
8 do4

calculate goodpossx(n);5

forall (fi, li) ∈ U do6

q = fi;7

while (q < li) do8

while (q < li) ∧ (goodpossx(n) 6= 1) do9

q + + ; /* skip negative frames */10

end11

p = q ; /* define segment start */12

while (q < li) ∧ (goodpossx(n) = 1) do13

q + + ; /* collect new candidate segment */14

end15

if
(
q − p > 1

4s
)

then16

S = S ∪ (p, q) ; /* add segment to output */17

U = U \∗ (p, q) ; /* exclude segment from analysis */18

end19

end20

s = 3
4s ; /* narrow steadiness window */21

if s ≤ 12 · 2 ; /* minimal size (12sec.) reached */22

then23

break;24

end25

end26

end27
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Figure 5.3: Energy curves of a 4-channel, 15 min. duration, monitoring recording. Extracted
segments are boxed by blue (start) and dashed red (end) lines.

5.2.2 Detection of the canonic Chaffinch’s flourish

In the Chaffinch detector, the pre-selection of segments is done by matching the monitoring
signal to 15 templates of the Chaffinch’s flourish. Signal excerpts being very similar to a
flourish template are gathered as flourish candidates for further processing. As the comparison
is done in the spectral domain, we use the time anticipating spectral features F#anti

SPEC, as derived
in Section 4.1.1, to represent the data during this process. The features are extracted from
the frequency band ranging from 2 to 6 kHz. Here, the feature extraction parameters are set
to #bins = 40 coefficients per feature and #anti = 4 anticipated vectors. The frame rate is set
to fps = 50 features per second. In this scenario, the anticipating character of these features
is important in order to get hold of the flourish’s development over time.

Developing a robust similarity measure on noisy spectral features is a challenging task. Con-

(p,q)

S

U
(p,q)

S

U

Figure 5.4: Demonstration of the energy segmentation procedure: the sets U and S are
depicted before and after the extraction of segment (p, q).
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Figure 5.5: FSPEC features from 12 of the 15 flourish templates, used to gather stanza candi-
dates. Depicted are non-anticipating features instead of the F#anti

SPEC data used in the algorithm.

sidering the F#anti
SPEC features, the amount of noise is reduced due to the feature extraction

process. As mentioned for the special case of searching self-repeating patterns, using the two-
dimensional correlation function is a straightforward way to measure the similarity of chunks
of the monitoring signal and the templates. This measure works quite well for searching in a
homogeneous data set, where the noise and other signals are either quite steady or silent and
the number of singing individuals is limited. As spectral templates can easily be defined by
using a graphical user interface such as XBAT, the 2-dimensional autocorrelation measure is
a powerful tool for the semi-automatic exploration of such data sets. Given a scenario where
full automation and good generalisation over individuals is required, the above measure shows
some important drawbacks: at first, given a particular template, the autocorrelation measure
is very rigid in defining the temporal sequence of spectrogram features. This leads to dispro-
portionally bad similarity estimates for slightly slower or faster instantiations of the searched
call element or phrase. Secondly, special filters and thresholds that are difficult to calibrate a
priori are required to suppress background noise in both the template and monitoring signals.

In order to minimize the problems associated with the latter, we use “dirty” samples of the
Chaffinch’s flourish, which are extracted from different recordings with diverse background
noises. Instead of sticking to the fixed temporary progression given by the sequence of spectral
features for each template, this progression is allowed to be edited by means of repetition of
feature vectors. Thus locally varying the relation between the template’s and the recording’s
progression speed, the resulting similarity measure enables a better-suited comparison for
time-scaled instantiations of the flourish template. These are likely to occur, because the
length of comparable syllables varies between Chaffinch individuals.

As this “time warping” similarity measure can be efficiently computed using the Dynamic
Programming strategy, the resulting procedure is commonly called Dynamic Time Warping
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Figure 5.6: Motivation of the time-variable alignment: spectral features of a template and
monitoring signal. The arrows connect the corresponding frames of both sequences.

[RJ93]. Formally, the temporal deformation of the feature sequences is represented in form
of aligned pairs of FSPEC feature vectors (see Figure 5.6). Let X := (x1, x2, · · · , xM ) ∈
RK×M , for M ∈ N be the FSPEC sequence of a Chaffinch flourish’s template, while Y :=
(y1, y2, · · · , yN ) ∈ RK×N , for N ∈ N represents an appropriate excerpt of the monitoring
signal to be analysed. Here, K = #bins · (#anti + 1) represents the dimension of the single
feature vectors xi, yj ∈ RK . In order to measure the alignment quality, we first define a local
similarity measure c : RK × RK → R on the F#anti

SPEC vectors. In this thesis, for x, y ∈ RK , the
cosine of the Euclidean angle of two vectors is used:

c(x, y) := 1− 〈x, y〉
||x|| · ||y||

. (5.3)

Here, ||x|| represents the Euclidean norm of x. In particular, the above measurement is
invariant up to the overall energy contained in a feature vector, while measuring the similarity
of the frequency distributions of both vectors. Now, the similarity measure corresponding
to the entire sequences X and Y depends on the similarity of the sequences induced by
the optimal alignment of the two sequences. Vice versa, the term optimal refers to the
maximisation of the similarity values derived from the aligned feature vectors. As this cyclic
determination may lead to absurd manipulations of both of the sequences, some constraints
are incorporated in the process. In order to describe the DTW algorithm and the constraints
used to achieve the alignment, we need to formalise the DTW process:

An alignment of two sequences X,Y is given by a warping path p := (p1, · · · , pL), where
the pairs pl = (nl,ml) ∈ {1, · · · , N} × {1, · · · ,M} for l ∈ [1 : L] represent the elementary
alignments of the feature vectors ynl and xml . For the purpose addressed in this thesis, the
following constraints have to be satisfied by a strict warping path:

(i) Boundary condition: (p1 = (1, 1)) ∧ (pL = (N,M))

(ii) Step size condition: ∀` ∈ {1, . . . , L− 1} : p`+1 − p` ∈ {(1, 0), (0, 1), (1, 1)}



5.2. DIRECTING THE SEARCH VIA SEGMENT PRESELECTION 69

Note, that the subtraction of pairs as in (ii) is meant to be component-wise. The above
conditions ensure that both of the signals are examined completely in the sense of every
template feature vector having at least one associated vector in the tested signal and vice versa.
As condition (ii) does not allow steps to past time positions, the warping path’s elements are
increasing in a weak monotonic fashion. As, a priori, the above optimal alignment is not
clear, the similarity measure defined in (5.3) is calcualted for each possible pair of vectors
(i, j) ∈ {1, · · · , N} × {1, · · · ,M}, leading to a similarity matrix S ∈ RN×M , with

Si,j := c(xi, yj). (5.4)
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Figure 5.7: Left: spectral features of two chaffinch stanzas. Right: their similarity matrix S.
Here, black areas depict similar feature vectors.

Calculating this matrix is the most expensive operation involved in the matching procedure,
leading to an O(NM) algorithm. There are non-trivial ways to narrow the pairs from which
the similarity measure is calculated, leading to faster and comparably accurate measurements.
Beneath the use of heuristic restraints keeping the warping path near the diagonal line, a multi
resolution approach can be used to define a range of similarity values to be calculated. For
further details we refer to [Mat06] and [Ewe07]. In Figure 5.7, such a similarity matrix is
displayed for two stanzas of the same individual, differing in their beginnings. As we now
visualize this similarity matrix, the motivation of the term “warping path” becomes clearer:
imagining the steps pl = (nl,ml) of associated vectors as sequence of positions in the similarity
matrix, we can depict a continuous path, starting at the bottom left and proceeding to the
top right corner. For general orientation, the lax path, plotted in red in Figure 5.8, may be
considered. An optimal warping path is supposed to follow the similarity maxima visible as
black ridges in the matrix S. The more this path deviates from an approximatively diagonal
line, which is clearly visible in the top right corner of the plotted similarity matrix, the more
local deviations will be introduced in the final alignment of X and Y .

Now, to accomplish the Dynamic Time Warping, we calculate a warping matrix D ∈ RN×M .
During the warping procedure, this matrix will be successively filled with path similarity
measures. For each position (n,m) ∈ N2, Dn,m will contain the similarity measure of the
optimal path aligning (x1, · · · , xn) and (y1, · · · , ym). As the step condition (ii) implies a
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monotonic succession of the time indices to be aligned, the latter matrix can be filled by an
algorithm using the following recursion:

D(n,m) = max


D(n− 1,m) + c(xn, ym),
D(n,m− 1) + c(xn, ym),
D(n− 1,m− 1) + c(xn, ym)

(5.5)

The first row and column of D are initialized to D(n, 1) =
∑n

k=1 c(xk, y1), ∀n ∈ {1, . . . , N}
and D(1,m) =

∑m
k=1 c(x1, yk), ∀m ∈ {1, . . . ,M}, thus assuming all paths containing the

previous positions to begin at position (1,1). Now, the above recursion is applied to fill out
D(n,m), for n ∈ {2, · · · , N}, and m ∈ {2, · · · ,M}. After completing this computation, it
is possible to retrace the optimal warping path: starting at position (N,M), with D(N,M)
representing the accumulated similarity measure for the optimal alignment, the path is recon-
structed by step-wise following a maximum warping matrix entry, whilst observing the rules
given by the step condition (ii) in (5.2.2). For further details on the DTW measure, we refer
to [RJ93].
Being designed to align two sequences of approximately equal length, the above warping
procedure has to be used with an additional segmentation algorithm, providing appropriate
excerpts of the monitoring signal to be compared. A heuristic solution to this, using the FESF

measure, will be discussed in the following Section 5.2.3. As these procedures “prematurely”
define the temporal borders of a sound contained in the monitoring signal, the optimal align-
ment is rarely achieved in the subsequent aligning procedure. Using a subsequence DTW
approach, as described below, will show a way how to use knowledge from the warping ma-
trix to render the task of generating excerpts unnecessary. This is achieved by introducing
a more flexible matching procedure. Here, the excerpts will be generated as a by-product of
aligning the whole analysis window.
Aligning a template flourish X := (x1, x2, · · · , xM ) ∈ RK×M , M ∈ N, to a large analysis
excerpt Y := (y1, y2, · · · , yN ) ∈ RK×N , where N ∈ N may be 50 times the value of M , we
have to weaken the path conditions given in (5.2.2) by replacing rule (i) as follows:

(i) Weak boundary condition: (p1 = (ns, 1)) ∧ (pL = (ne,M)), with ns ≤ nm and ns, ne ∈
{1, . . . , N}.

(ii) Step size condition: ∀` ∈ {1, . . . , L− 1} : p`+1 − p` ∈ {(1, 0), (0, 1), (1, 1)}

In order to reflect the loosened boundary condition, the initialisation of the warping matrix D
is also adapted: while the first row is initialized as explained above, the first column is set to
D(1,m) = c(x1, ym), ∀m ∈ {1, . . . ,M}. The above rules allow the searched path and thus the
proposed “matching excerpt” to begin at an arbitrary position within the test signal, ending
at an also unrestricted position. Note, that the above condition still requires the flourish
template to be fully aligned. In Figure 5.8, the adapted procedure is applied on the Chaffinch
stanza’s of the previous example. The warping path plotted in the left image starts at position
40, thus leaving the antecedent frames of signal “b” unaligned. Furthermore, considering the
warped signals on the right side, we can see how the second element in stanza “b” is used to
mimic the weak first element in song “a”.
Another notable difference is made through the option of deriving M different valid paths
from the warping matrix D, corresponding to optimal paths with respect to their ending
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Figure 5.8: Left: similarity matrix S with extracted lax path. The warped spectral feature
sequences of the two Chaffinch stanzas are depicted on the right.

point in Y . As the values in the last column of D represent the costs of these optimal paths,
the vector D(N,m), m ∈ {1, . . . ,M}, can be seen as a probability measure for a detected
flourish, indicating the plausibility of the actual template flourish ending at position m (and
also being performed just before).

By enlarging the excerpt to be aligned as described above, we may expect several Chaffinch
stanzas to be included within. Thus multiple paths are extracted from the warping matrix.
In Figure 5.9, the extraction of two warping paths is exemplified: Comparing the paths’
positions with the associated spectral features, the template shown on the left, is matched to
the flourishes of the two visible Chaffinch stanzas. Although the similarity matrix exhibits
local maxima for some positions preceding the chosen paths, the last part of the template is
only matched at the selected positions. Here, the time-anticipating character of the involved
features distinguishes the upwards-downwards progression of the template’s second part from
the downwards directed progression of the former stanza elements.

As explained in the beginning of this section, noise contained in spectral features such as the
FSPEC features is also affecting similarity measures on these features. Due to the stepwise
definition of measure c, the derived similarity estimate of a full path is influenced by noisy
features. Although an automatic estimation of the number of stanzas contained in the excerpt
seems to come with improvements of the overall false positive rate as well as with savings
in processing time, thresholding the flourish probability measure is a non-trivial challenge
due to the reasons mentioned above. Thus, a fixed number #matches of stanza candidates is
extracted from each large analysis excerpt, leaving the former task to future work. Using
knowledge about the typical inter-stanza intervals performed by Chaffinches, the expected
stanza frequency can be estimated for a single individual. As the presence of several birds,
singing in call-response structures or even more densely timed, is a common situation, the
actual value of #matches = 5 extracted paths (per 40 seconds and per template) defines a
tradeoff regarding call probabilities, false alignments, e.g. to syllables contained in songs of
other birds, the number of present individuals and the number of templates used.

The alignments are extracted using a greedy two-step algorithm:



72 CHAPTER 5. SIGNAL CLASSIFICATION AND BIRDSONG RECOGNITION

Monitoring signal

F
ea

tu
re

 b
in

1800 1850 1900 1950 2000 2050 2100 2150 2200 2250 2300 2350

5
10
15
20
25
30

Template

T
im

e[
W

F
T

−
fr

am
es

]

Feature bin
10 20 30

5

10

15

20

25

Time[WFT−frames]

Score matrix S

1800 1850 1900 1950 2000 2050 2100 2150 2200 2250 2300 2350

20

15

10

5 

Figure 5.9: Demonstration of the DTW template matching: FSPEC features of the monitoring
signal. The template’s spectral features have been plotted with the axes rotated by 90 degrees.
Bottom right: similarity matrix, featuring two extracted (cyan) paths, aligning the template
to Chaffinch flourishes. Dark/black regions correspond to high similarity values.

1 Extract the path pm = (pm1 , · · · , pmL ), where m = arg max
b

(D(N, b)) results the best

actual scoring alignment.

2 Exclude the aligned time positions from further extraction:
For all 1 ≤ l ≤ L, with pml = (l, k), let D(N, k) = 0.

Note that for each template the warping matrix D is recalculated and thus the paths excluded
in the previous alignment step are again available to the actual alignment procedure. Although
picking the best matching excerpts from the monitoring window, the above algorithm is
expected to generate many false alignments. Especially when having only few or even no
stanzas in the analysed excerpt, many strikingly short false positives will be generated. Thus,
in a postprocessing step, segments being shorter than a heuristic, template-based threshold
length, are discarded. Actually an aligned excerpt is considered erroneous if it is shorter
than half the template’s length. In this process, most of the false positives are sorted out.
This establishes the length factor of sequences, as valuable quality indicator for the matches
derived in the subsequence DTW process. In order to define a ranking of the segments, the
associated DTW-path similarity sum is divided by its length and stored,

score(pm) :=
D(N,m)

L
. (5.6)

Finally, having processed all (40 seconds each) analysis windows, the extracted segments are
gathered to segment groups or clusters corresponding to simultaneous events by an algorithm
to be discussed in the following Section 5.2.3. As the windows are defined in an overlapping
manner, an excerpt may be aligned twice, that means at least once per analysis window.
Thus, a subsequent segment clustering algorithm, as described in the following chapter, will
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Figure 5.10: Spectrogram of a monitoring signal and SyncPlayer representation of extracted
Chaffinch flourish candidates: black lines correspond to individual segments. Note: a grey
line is drawn each 20 seconds for better reference.

be able to connect and group the segments extracted in these windows. In the optimal case,
the stanza sequences of two Chaffinches, singing in a call- and response manner, are expected
to be grouped to two clusters containing the flourish instantiations of the respective bird.

The result of the above template matching and preselection routine can be visualised within
the SyncPlayer framework [Fre06]. The graphical user interface of this audio player allows
an interactive navigation within particular audio recordings, using the knowledge of several
additional data streams such as the annotations gained from the previous template-matching
process. In Figure 5.10, the “AudioStructure” plug-in of the SyncPlayer is used to visualise
the automatically extracted annotations. In this audio structure window, each of the vertical
black lines corresponds to a flourish candidate segment. When comparing the annotated
flourish segments with their associated sound in the spectrogram, some false candidates, as
the segment associated with the stanza beginning at 70 seconds, can be identified by the
reader. Furthermore, some stanzas in the spectrogram have no associated candidate (e.g. at
position 110). Being caused by inappropriate additional matches or noisy spectral features,
these early classification errors will determine the boundaries for the precision of the final
detection.

5.2.3 Exploiting stanza repetition (Audio Summarisation)

A useful approach to detect bird voices is to exploit the frequent and, at least for some species,
quite exact repetitions of their calls or song stanzas. For this task, the more general Audio
Summarisation approach seems very promising. The algorithm proposed in the following
will form groups of similar audio events occurring in a recording. Thus, given the example
of a Chaffinch or Great Tit, singing in the monitoring period we are likely to record several
instantiations of their stanzas. Even many species performing a complex and highly variable
composition of different stanzas are known to reuse certain blocks at the phrase level. An
approach to the identification and grouping of such reoccurring sequences is to be presented in
the following paragraphs. From the elements of these groups, a representative one is selected
for each group, which is presented to the user or used as an input to a further classification
stage. For a set of previously selected frequency bands, the former task is performed separately
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using four steps:

• Extract “interesting segments” using a spectral flatness based criterion.

• For each segment, analyse the signal for similar events using DTW. Link events being
identified in the same search, including the searched segment.

• Link segments according to temporal concurrence.

• Group segments having direct or indirect connections to each other.

As the summarisation procedure to be described in the following paragraphs is designed to
analyse bird songs or similar acoustical events, the spectral flatness measure, being sensitive
to high energy, small bandwidth spectral events, is used to extract the above segments.
Based on the F#anti

SPEC-features used in the Chaffinch’s flourish detector (Section 5.2.2), with
parameters set to #bins = 40, #anti = 4 and fps = 50, the FESF curve is calculated for large
analysis excerpts. Unfortunately, in the experiments performed for this work, the length of
the analysis excerpts was bound to 40 seconds due to small memory resources on the testing
machines. Thus, in the experiments performed with the above parametrisation, events having
a repetition interval of more than about 40 seconds were not considered by the algorithm.

The actual segmentation is based on a binary decision vector b(n), indicating the probability
of a bird song performed at frame n. Let x(n) be the FESF feature curve according to the
actual analysis window. At first, a moving average filtered version of x is calculated, deriving
adaptive mean FESF values for a range of about 666 milliseconds:

s
x̄ for s = 33. For each

position n, the mean and variance values of a neighbourhood Un, maximally containing 20
seconds (1001 coefficients) of the filtered vector, are calculated. Examining an analysis window
having a total length of sw features, for n ∈ {0, · · · , sw − 1} we extract a neighbourhood
reference vector R as follows.

R(n) := mean(Un) + 5 · var(Un), (5.7)

with Un :=
(s
x̄ (k0), · · · ,

s
x̄ (ke)

)
,

k0 = min(n+ 500, sw)
and ke = max(n− 500, 0).

The binary decision vector b is thus defined by

b(n) :=

{
1 if

s
x̄ (n) > Rn,

0 otherwise.
(5.8)

Now, a segment extraction algorithm is applied on the decision vector. Besides the require-
ment of exceeding the minimum length of minlen = fps

3 samples, or 333 ms, extracted segments
have to exceed a threshold of half the binary decisions b(n) being positive in an interval of
600 ms. If a maximum length threshold is not reached, such segments are expanded in a
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Figure 5.11: Extraction of interesting segments. Top: spectrogram of analysis excerpt Y and
Bottom: filtered FESF curve. Extracted segments Xn are boxed by blue (start) and dashed
red (end) lines.

postprocessing step, gaining up to 20 percent of their length. The actual factor is determined
by an examination of the first order derivative of

s
x̄.

For each interesting segment query Xn, such as those marked in Figure 5.11, a DTW search
for similar segments is started on the analysis window Y . Using the multiple alignment
approach as proposed for the Chaffinch’s flourish in Section 5.2.2, a fixed number of segments
is extracted from the actual analysis excerpt. Finding an appropriate value for the number
of aligned segments becomes a complex task if the multiple dependencies on the number of
calls as well as calling individuals, signal-to noise ratio and window length are taken into
account. At this point, deriving #matches = 5 associated segments per 40 seconds query
window will serve as tradeoff answering our purposes. As depicted in the DTW-based search
for the Chaffinch’s flourish, aligned segments being shorter than half the query’s length are
discarded at this point.

The above two steps, namely extracting promising queries and searching repetitions of these,
are performed on each analysis excerpt. The previous excerpts are designed to achieve a win-
dow width of 40 seconds and 50 percent overlap for successive analysis windows. Afterwards,
the extracted segments are summarised using a graph algorithm to extract strongly connected
components - in short: SCCs - from undirected graphs. The goal of the following procedure
is to group segments that

i either are associated to the same DTW-query, or

ii occur simultaneously.

Transporting the segment summarisation task to graphs enables us to make use of some
elegant and easy concepts for algorithms on graphs. Basically, graphs are used to model
the interconnections between separate entities, called nodes, e.g., v, u ∈ V . Between these
nodes, links are defined using the edge set E, containing pairs (v, u),∈ E of nodes being
linked. An undirected graph G := (V,E) is constructed from all segments extracted in
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the above queries. For a total number of N queries X0, · · · , XN−1, each extracted warping
path P̃ k,n, k ∈ {0, · · · ,#matches − 1}, n ∈ {0, · · · , N − 1} is associated to a node vk,n. As
the summarisation is performed on the whole recording, the original paths P k,n, containing
window-based references, are transformed to absolute frame positions, yielding P̃ k,n. More-
over, n specifies the query from which the respective segment results. Now, the edge relation
∼ is defined according to the conditions (i) and (ii):

vj,m ∼ vk,n ⇔ [m = n] ∨
[
shrdtime

(
P̃ j,m, P̃ k,n

)
>

1
2

]
. (5.9)

Figure 5.12 depicts the envisaged graph representation of an analysed monitoring excerpt.
Here, a single edge is justified by condition (II), leaving the remaining edges to (I). For
P k,n = (p1, · · · , pK), P j,m = (q1, · · · , qL), C := max(K,L) and C,K,L ∈ N, the function
shrdtime measures the time shared by the two paths associated with the above nodes:

shrdtime(P,Q) :=
1
C
|{j | ∃g, h, v, w ∈ N : pg = (v, j), qh = (w, j)}| . (5.10)
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Figure 5.12: Demonstration of an audio summarisation graph. The example signal, being
constrained to 3-7.5 kHz, is constructed from calls of the Great Tit (Parus mayor, orange),
Common Swift (blue and green) and the Blue Tit (Cyanistes caeruleus, black).

The edge set E := {(vj,m, vk,n) | vj,m ∼ vk,n} results from the direct application of the above
relation. Now, strongly connected components are extracted. SCCs are defined as maximal
subgraphs Sk := (Vk, Ek) of the graph G, where the nodes vkj ∈ Vk are completely linked. For
the above example, there are two SCC’s, containing the big orange nodes (Great Tit) on the
bottom in the first SCC while combining the upper blue and green nodes (Common Swift)
in a second component. Formally, for each pair vkj , v

k
0 ∈ Vk there is a sequence of l + 1 edges(

(vkj , p0), · · · , (pl − 1, pl), (pl, vk0 )
)
∈ El+1

k , connecting the above nodes.

There are lots of implementations for the task of extracting SCCs from graphs, including
linear time (Θ(|V | + |E|)) algorithms. For the proof of concept targeted in this work, a
naive union-find implementation is used. As the usual number of nodes and edges is quite
small (< 1000), the computational costs of the naive implementation become irrelevant in
comparison to the expensiveness of the feature extraction step. For a detailed discussion of
the relevant algorithms on graphs, we refer to [CLRS01].
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The extracted SCCs are interpreted as signal groups: the segments associated with the con-
tained nodes are expected to have similar content. Unfortunately, the concurrence measure
used for the definition of the edge relation in (5.9) does not check the acoustical similarity
of the segments to be connected. Hence, erroneous links are e.g. produced by segments
featuring the simultaneous calls of two birds. As the number of matches returned for each
query is fixed, some of the erroneous alignments being put out to fulfil this condition may
also cause false groupings. Thus, the #matches-parameter is a useful value to adjust when
tuning the summarisation procedure. Generally, the proposed algorithm is likely to work well
on recordings with a bounded amount of crosstalk in the analysed frequency bands. When
working with a large set of signal sources, the setup of the individual analysis bands is crucial.

As for the template matching procedure, annotations in a SyncPlayer compatible output for-
mat are generated, containing the extracted segments and the cluster structure. Furthermore,
an audio representation is derived for each cluster by concatenating the associated audio ex-
cerpts. Thereby, the individual segments are sorted according to their DTW-similarity score.
A human voice, announcing the segments’ ranks, interleaves each pair of segments. In Figure
5.13, the introduced representations of the summarisation result are depicted: a monitoring
signal was analysed, focussing on the 3-7 kHz frequency band. The number of rows being
displayed in the SyncPlayer table corresponds to the actual number of 5 remaining clusters.
Comparing the spectrograms of cluster 1 and 5, the two look very similar. Indeed, because of
the exclusive two common segments (at about 52 seconds) largely differing in their compared
size, the two parts of the specific bird’s song were not joined in the summarisation step.

However, a representative segment may now be chosen for each derived cluster. Besides
picking at random, as performed in this work, both the temporal position and length of
a segment may be used to define a segment ranking within each cluster. An even more
sophisticated way would be to compute the DTW-similarity for all pairs of segments in the
particular cluster. For each segment, a score may be defined through its summed similarity
to the rest of the group’s segments.

For bird detection purposes like the automatic censusing of species occupying a certain habi-
tat, the classification of the above representatives may lead to a useful and cheap summary
of the whole recording. Of course, the classification results gathered in this first step can be
improved using the remaining segments in the respective group.

5.3 Song detection using periodicity features

In the following sections, the periodicity features and several derived measures, introduced
in Section 4.2, will be used to detect the Savi’s Warbler and other species having a song of a
similarly constant periodicity. In this case, the FNPS features show a very high robustness to
ambient noise while providing a basis for an effective analysis of such songs. The next section
is dedicated to the specific application of the mentioned features on the detection of the Savi’s
Warbler. In order to depict the general potential of the FNPS features and their relatives,
Section 5.3.2 discusses a more generic representation of these, opening the field of the features’
applications towards multiple class classifiers, which could be used for the detection of several
other species.
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(a) Monitoring signal and SyncPlayer representation of single segments
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(b) Audio summary: Cluster 1
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(c) Audio summary: Cluster 2
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(d) Audio summary: Cluster 4
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(e) Audio summary: Cluster 5
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Figure 5.13: Audio summarisation demo: SyncPlayer table showing the segments of the
5 automatically extracted clusters, spectrogram (a) of the analysed band of a monitoring
recording and audio summaries (b-e) of the individual clusters. Note: segments are sorted by
rank in audio summaries. As the 3th cluster is singular, the waveform is not depicted. Cluster
number 2 (plot c) was truncated to retain the remaining segments’ fine spectrogram structure.
Separating the single segments, the human voice announces each segment’s number.
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5.3.1 Savi’s Warbler: Characteristic period recognition

In this chapter, a procedure to detect very static, periodic birdsongs will be presented, using
the Savi’s Warbler’s song as an example. In the design process of the following approach,
special attention was put on the robustness required for working with signals recorded in noise
conditions typical for unsupervised monitoring. As explained in Section 4.2.6, the F−nois

NPS

features, defining the basis for this classifier, are well suited for the prospected scenario. In
Figure 5.14, the Warbler’s signal on the left is almost imperceptible due to the simultaneous
noise. Still, the depicted F−nois

NPS features indicate the Warblers repetition frequency.
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Figure 5.14: Left: noisy recordings of two Savi’s Warbler songs. The first part of the mon-
itoring signal contains heavy rain noise. The second half of the signal is dominated by the
overlapping songs of many birds. Right: associated FNPS features.

Now, either for the candidate segments S, derived in Section 5.2.1, or for the whole monitoring
signal, several one-dimensional measures will be applied, indicating the following properties
of a periodic signal:

i Autocorrelation sharpness (FACSHARP)

ii Dominant element repetition frequency

iii Relative strength of this frequency (compared to other, simultaneous frequencies).

At first, autocorrelation features are extracted for 5 subbands of the Warbler’s typical band
(3.5-4.8 kHz) and a flanking band (0.5-1.5 kHz), using spectral features with fps = 300 frames
per second and #bins = 30 bins. The resulting autocorrelation features, having a maximal
lag of sac − 1 = 127 WFT-frames, are sensitive to periodics in a range of approximately 2.4
to 150 Hz. These features are calculated each ∆ac = 16 WFT-frames, leading to a total of
fpsac = fps

∆ac
= 18.75 ACORR-frames per second.

The main classification criterion will ensure the frequency (ii) to remain in the range expected
for a Savi’s Warbler’s song, which is bounded by 44 and 60 Hz. Although, in a previous version
of the algorithm, the original F−nois

NPS features were used for the extraction of the above values,
we will introduce a slightly modified version of these features. In Section 4.2, the F−nois

NPS

features are derived from the subband FABP features. Here, a best subband, containing the
clearest element repetition, is selected, which then represents the whole analysed band. As,
in this particular case, the algorithm is designed to search for a distinct element repetition
frequency, the above features fail to serve this purpose given a simultaneous and stronger
element repetition with a different repetition frequency. In this case, the autocorrelation -



80 CHAPTER 5. SIGNAL CLASSIFICATION AND BIRDSONG RECOGNITION

Time[s]

F
re

qu
en

cy
[k

H
z]

0 5 10
2

3

4

5

6

7

8

Time[seconds]

E
le

m
en

t f
re

q.
[H

z]

2 4 6 8 10 12 14
0

20

40

60

Time[seconds]

E
le

m
en

t f
re

q.
[H

z]

2 4 6 8 10 12 14
0

20

40

60

Figure 5.15: Left: spectrogram featuring a loud Grasshopper Warbler’s (Locustella naevia)
song, and a weak Savi’s Warbler’s song at 10 seconds. Boxes depict the range of two subbands.
Right: F−nois

NPS features of the respective frequency bands in the same order.

and thus the F−nois
NPS features - will be focused on that second signals frequency, more or less

eliminating the relevant signal.

In Figure 5.15, the dominant Grasshopper Warbler’s song is masking the searched bird’s song.
Still, in the lowest subband, the Savi’s Warbler’s typical 50 Hz dominate the Grasshopper’s 22
Hz and their harmonics. Thus, instead of selecting a best subband for each ACORR-frame,
as described in Section 4.2.4, Equation (4.18), all of the 5 subband autocorrelation sequences
F norm

ACORR[m], m ∈ {0, · · · , 4} are examined separately. Unfortunately, the amount of data to
be evaluated has grown by a factor of 5. In order to compensate for this, in each feature
extraction stage of the following procedure, subband-frames not fulfilling some particular
conditions on the calculated features will be excluded from further analysis. To keep track
of the subband frames being queued for further processing, the set Rs = {r0, · · · , rK}, with
rk = (m,n) ∈ {0, · · · , 4} × N will specify these frames by band number m and time position
n. R0 is initialized containing all subband frames R0 := {(0, 0), · · · , (#sbands − 1, L − 1)},
where L ∈ N represents the length of the F norm

ACORR sequence derived from the segment to be
classified. In this stage, the autocorrelation sharpness is calculated for each subband frame
rk. Frames with corresponding sharpness values missing a fixed threshold of 0.1 are filtered
out.

R1 := {(m,n) ∈ R0 | FACSHARP[m](n) > 0.1}. (5.11)

Here, FACSHARP[m](n) refers to the autocorrelation measure defined in (4.16), being applied
on the m-th subband. Now, for the remaining frames, the denoised novelty power spectrum
features F−nois

NPS [m] are extracted, using a DFT of length N = 512 and a flanking band, as
defined above, for the denoising process. As explained in Section 4.2.6, the autocorrelation
curves are extended to the DFT-length using zero-padding.

For each such subband-frame rk ∈ R1, the dominant element repetition frequency is estimated
by picking the maximum value of a truncated version of the novelty power spectrum features.
As the F−nois

NPS features usually carry much energy in the coefficients corresponding to low
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Figure 5.16: Left: spectrogram featuring a Savi’s Warbler’s song. Right: FACSHARP features
of a single subband with dashed threshold line.

frequencies, the maximum search starts from an index ω0, associated to the frequency of 15
Hz, thereby omitting the latter critical coefficients. A frequency estimate is then defined by

ω[m](n) :=
fps
N

arg max
w>w0

(F−nois
NPS [m](w, n)), (5.12)

for (m,n) ∈ R1, given a DFTN for the calculation of the novelty power spectra F−nois
NPS [m].

Again, the set of subband-frames is filtered, retaining the segments featuring pitch estimations
in a range of 44-58 Hz.

R2 := {(m,n) ∈ R1 | 44 ≤ ω[m](n) < 58}. (5.13)

Now, the remaining subband-frames are measured for the “dominance” of the Warbler’s
periodicity range. Therefore, the energy contained in the coefficient of the novelty spectrum,
corresponding to ω is compared to the overall energy in the spectrum. Actually, the measured
energy, not directly corresponding to the energy of the acoustic event, indicates the relative
strength of the periodic series of novelty peaks. Thus, the actual comparison is done regarding
a feature similar to the autocorrelation sharpness measure. Let p = 75, q = 99 define the
novelty spectrum positions corresponding to the frequencies of 44 and 58 Hz. The domination
feature Fdotn[m](n) is then defined by

Fdotn[m](n) := 1−
E(m,n) −

∑q
f=p FNPS[m](f, n)

E(m,n)
, (5.14)

where E(m,n) =
N/2−1∑
f=0

FNPS[m](f, n).

High Fdotn measurements indicate a low percentage of simultaneous periodic signals. Before
classifying the signal, the time resolution of the above features is reduced to a sample rate
of 4 Hz by means of grouping blocks of successive features into time bins Bk. Furthermore,
the individual subband results are summed into a shared bin. Thus, the Fdotn-feature values
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Figure 5.17: Continued example from Figure 5.16, depicting features from a selected subband:
Top left: novelty power spectrum features derived for frames in R1. Omitted frames are
marked by red lines. Top right: element repetition frequency estimates ω[m](n) and frequency
thresholds as dashed lines. Bottom: Fdotn[m](n) domination feature for frames in R2.

corresponding to the same bin are summed up, and saved as F ∗dotn.

F ∗dotn(k) :=

{
0, ifBk = {},∑

(m,n)∈Bk Fdotn[m](n), otherwise,
(5.15)

where Bk :=
{

(m,n) ∈ R2

∣∣∣∣ k =
[
4n

∆ac

fps

]}
Time bins lacking corresponding frames are set to zero. Another feature is generated by
counting elements in R2 which contribute to a particular time bin. Subsequently, the curve is
smoothed by applying a sliding mean filter having a length of two seconds or eight samples.

Fwarb(k) =
8(

˜Fwarb(·)
)

(k), where (5.16)

˜Fwarb(k) := |Bk|.

When analysing a multi-channel recording, this complete above procedure is performed for
each channel separately. At this point, the results are combined by frame-wise summation
of the respective Fwarb curves. The F ∗dotn curves are summed in the same manner. Now, a
preliminary segmentation is performed: maximal segments oj ∈ O are extracted, fulfilling the
following treshold requirements on the previous measurements:

O := {(p, q) ∈ Õ | @(v, w) ∈ Õ, v ≤ p, q ≤ w : w − v > q − p)}, (5.17)

where Õ := {(p, q) | ∀p ≤ l ≤ q : (Fwarb(l) ≥ Tw) ∧ (F ∗dotn(l) ≥ Td)}.
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The above thresholds are usually set to Tw = 2 and Td = 5 · #channels
2 . Afterwards, given

a minimal segment interspace of 3 seconds, closely grouped segments in O having an inter-
space smaller than 3 seconds are combined and replaced by a summarising segment. Finally,
segments having a total length of less than 3 seconds are discarded.

This segmentation routine finalises the classification procedure, labelling all remaining seg-
ments as songs of the Savi’s Warbler. These segments are now ranked according to the mean
F ∗dotn value, which is computed for each segment. Using a suitable software for playback of
annotated audio, like the SyncPlayer [SYN] or Audacity [AUD] software, the results of the
above classification can be browsed in an intuitive manner.

When operating with multichannel recordings, the above procedure can be extended to es-
timate a location of the sound source. This is achieved by comparing the F ∗dotn(k) values of
the different channels. The channel provided by the microphone being located nearest to the
source is likely to gain the highest feature value. This is particularly caused by the minimal
signal to reverb and signal-to noise ratios provided by the selected microphone. In Figure
5.18, this kind of estimation is illustrated using the Audacity software. Being capable of
displaying the 4 channels of the monitoring recordings as well as generic textual annotations,
this software is used for the representation of the detector’s output. Fortunately, the required
annotation format is plain ASCII text, thus, the produced detection results can be easily
integrated into further applications.

Figure 5.18: Audacity software displaying a 4-channel spectrogram of a monitoring record.
Additionally, the result of the Savi’s Warbler detector is plotted in the bottom graph. Textual
annotations follow the format “s:score, c:estimated channel”.

5.3.2 Classification based on element frequency

Considering the robustness and accuracy of the above algorithm, which is evaluated in Section
6.1, the adaptation of the Savi’s Warbler detection algorithm and its features to detect further
species is seems very promising. Typical target species are other members of the Locustella
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family, namely the Grasshopper and River Warbler, as well as many crickets and some toads.
Instead of tuning the features introduced in Section 5.3.1 to the particular properties of each
species, a general approach is motivated in this chapter. By means of extracting several
additional parameters from the previous features, the enlarged feature set is designed to serve
as the base data for classifiers supporting unsupervised training. Thus, leaving the task of
defining accurate classification boundaries to an automatic process, the task of expanding
the features’ application range is subject to the availability of training data sets for distinct
species, reducing the manpower needed to perform the tuning.
Similar to the feature extraction applied for the Savi’s Warbler’s detection, a set of subband
novelty power spectrum (FNPS) features is derived for a set of subbands. In this generic
approach, the frequency range of 1.5-10 kHz is split into 29 half-overlapping frequency sub-
bands. As the actual frequency band of an envisaged species in not known in advance, no
flanking band is defined and no denoising is applied on the features. Based on spectral fea-
tures being computed at fps = 300 frames per second, with #bins = 150 bins, the 29 subbands’
ACORR-frames of length sac = 128 are extracted each 64 WFT-frames.
Basically, the dominant repetition frequency is extracted from each of the 29 FNPS sequences.
This is achieved by the application of the element repetition frequency extraction routine
used in the Savi’s Warbler detector (see (5.12)). The frequency estimations extracted in this
step are improved on a frame by frame basis. This is achieved by an algorithm using the local
FNPS maxima to verify or correct the pitch estimations. Integrating the frequency ranges
associated with the respective subbands, a set of triples (ω[m](n), fm, n) ∈ {0, · · · , 127} ×
R × Z, containing the detected repetition frequencies with the associated subband’s center
frequency fm and ACORR-frame n, is extracted. Here, an optional filtering step, excluding
frames associated to minor autocorrelation measurements, may be applied. The resulting
features were, in a version modified to guarantee acceptable computation times, integrated
into the interactive web interface [TSA] of the Animal Sound Archive at the Humboldt-
University Berlin, enabling the users of this distributed sound database to immediately access
the element repetition frequencies of various species, by means of a “periodicity measurement
filter” (see Figure 5.19).
In the given example, in addition to the repetition frequency, a score is indicated for each
periodic segment. This score is computed using the domination feature Fdotn, as depicted
in figure 5.17. The Fdotn measure may be integrated by enhancing the above triples to
quadruples. Now, configurations of subband-periodics, being extracted at the same ACORR-
frame, can be analysed: let

Mn := {mn
i | FACSHARP[m](n) > T1}

contain the indices of all subbands fulfilling an autocorrelation sharpness condition with
threshold T1, then a series of feature configurations

Fabstractpn :=


ω[mn

1 ](n) fmn1 Fdotn [mn
1 ] (n)

...
...

...
ω
[
mn
|Mn|

]
(n) fmn|Mn|

Fdotn

[
mn
|Mn|

]
(n)

 , for n ∈ Z (5.18)

can be defined. Note that the above feature represents both the frequency bands used by the
calling or singing animal as well as the individual element repetition frequencies produced
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(a) The webinterface of the Animal Sound Archive, Humboldt University Berlin

(b) Results of the periodicity measure filter

Figure 5.19: (a) The web interface of the Animal Sound Archive, showing a spectrogram of the
European Green Toad (Bufo viridis), delivered through a java applet. In the bottom image
(b), markers, set by means of an approximative online-implementation of the Fabstractp fea-
tures, label periodic sequences by their inherent element repetition rate (in Hz). Furthermore,
the mean Fdotn value is noted as score for each such segment.
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thereby. Furthermore, the Fdotn[m](n) measurements may be used as a weighting function
defining the importance of the associated repetition frequency ω[m](n). Now, given a set
of recordings for a distinct species, a modelling approach supporting unsupervised learning
techniques can be followed. Once the Fabstractpn feature series is extracted, the contained
vectors can be reshaped to achieve a constant dimension, by narrowing the contained subbands
to those which are shared by the majority of all data points. Now, for example, a Neural
Network may be trained on the basis of the narrowed features. The proposed scheme may be
extended to a set of species, obtaining a multiple-class classifier.

5.4 Chaffinch: Model based song detection using extracted
structures

The following sections are focused on the extraction of structures inherent to the song stanzas
of some particular bird species. An energy-based procedure for the separation of stanzas into
phrases and/or elements was developed and tested by Fagerlund [Fag04], using a testing set of
relatively clean recordings. As the goal of this thesis is to robustly extract such structures from
monitoring material having low signal-to noise ratio’s, energy based measures were considered
to lack the necessary amount of robustness. Reducing the set of desired target species to those
emitting song stanzas containing repetitive phrases (see Chapter 2.4.1), the periodicity based
features can be used to approach this task. A first application of these features, used as
second stage for the detection of the Chaffinch, constitutes an element repetition frequency
based procedure for structure extraction. Section 5.4.2 will present the use of some standard
vector-clustering methods for the segmentation of autocorrelation sequences, as introduced
in Section 4.2.2.

5.4.1 Model evaluation based on dominant periods

Continuing the description of the Chaffinch detector from Section 5.2.2, a basic stanza segmen-
tation approach will be discussed in this section. Before classifying the candidate segments
derived in the aforementioned chapter, these segments are sorted in a descending order, ac-
cording to their DTW-similarity ranking. Now, beginning with the topmost segment, each
segment is processed separately. Operating on a signal excerpt being located before the respec-
tive flourish candidate, a segmentation into phrases is attempted. During the segmentation
procedure, two periodicity features, derived from autocorrelation curves, are of importance:
a pitch estimate is used to define areas of elements repeating within a nearly constant period.
Thereby, the autocorrelation sharpness measure, as defined in (4.16), is used to validate the
significance of the estimated periods. The extracted segments, featuring strong and constant
periodic repetitions, are treated as phrases in a birdsong, as defined when introducing the
Chaffinch’s song structure (Sect. 2.4.1). Then, by means of applying a set of rules on the
segment level, particularly for

• segment interspace,

• segment length,

• the inter-segment variance of periods and
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• a total number of segments,

a decision on whether a Chaffinch’s stanza was being analysed is provided.

Preliminary model check. Solely representing the tail of a Chaffinch’s song, the segments,
given as input to the classification stage, do not contain sufficient data to classify a full stanza.
Assuming a maximum stanza length of 3.8 seconds, neglecting the flourish’s length, features
have to be extracted for an excerpt of this length. Incorporating a first bit of prior model
knowledge, the excerpt or “stanza-body”, is chosen to end at the beginning of the candidate
segment, thus defining the stanza to end with the respective flourish. To reflect the approach
intended by the following procedure, the enumeration of segments and time spans shall be
understood in a reverse manner, thus starting at the last element of the stanza-body, before the
flourish. Then, the process proceeds - in reverse temporal order - towards the first elements.

FlourishStanza body

Figure 5.20: Spectral features for a stanza-body candidate (negative time values) and associ-
ated flourish segment (positive values). Boxes illustrate average energies. A yellow line marks
the “quick check” energy threshold.

As the following segmentation procedure is computationally expensive, a “quick check” is
made in advance, verifying a second and necessary classification criterion: the duration of the
stanza-body is required to be at last 1.3 seconds. This requirement is assured by extracting
a mean energy value of the Chaffinch’s typical band (2 - 6 kHz) for two signal blocks of 0.6
seconds, splitting an 1.3 seconds excerpt afferent to the stanza-tail (see red boxes in Figure
5.20). Each of these mean values has to exceed half the mean energy value calculated for the
suspected stanza’s flourish. In Figure 5.20, this threshold is indicated by a line. The first of
the previous blocks usually covers a small gap between the expected stanza-body and flourish.
A low energy value measured for this block indicates a gap of excessive length. Thus, some
attention is given to ill-conditioned cases featuring solitary flourish candidates drawn from, or
accompanied by calls or songs of other birds. Failing the energy test, a segment is discarded
from further analysis.

Period extraction After passing the above test, in order to perform the element repetition
period and autocorrelation sharpness measurements, normalised autocorrelation (F norm

ACORR)
features are extracted for the actual excerpt. Here, the initial analysis is focussed on the
frequency band between 2 and 6.5 kHz. With the parametrisation reading a maximum lag
of sac = 81 WFT-frames and a very small stepwidth of ∆ac = 1, the ACORR-frames are
calculated using spectral (FSPEC) features with fps = 320 frames per second and #bins = 40
bins (see Sections 4.1 and 4.2.2 for a more detailed account).
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The autocorrelation curves are now truncated to lags τ ∈ {12, · · · , 80}, corresponding to
element repetition frequencies from about 26.7 Hz down to 4 Hz. Similar to the Savi’s Warbler
detector, the motivation for this action lies in the high possibility of superior autocorrelation
entries being located at small lags. Different from the former case, the small lags correspond
to high frequencies. The high values at the mentioned positions are caused by their proximity
to the global zero-lag maximum. Especially with signals containing lots of low frequency
repetitions, the corresponding autocorrelation curves feature extensive slopes surrounding
each maximum. Regarding the study of the Chaffinch song’s structure, discussed in Section
2.4.2, the chosen frequency range appears to be sufficient for the majority of the expected
stanzas. Thus, a first period estimate is drawn from the truncated autocorrelation curves by
means of picking the respective global maxima:

ρ̃(n) := arg max
12≤τ≤80

(F norm
ACORR(τ, n)), (5.19)

where the integer n ≤ L indicates the actual ACORR-frame position. L refers to the total
length of the extracted autocorrelation sequence. Actually, the above procedure is very similar
to the extraction of the element repetition frequency in the Savi’s Warbler detector. Note that
the frequencies usually met in Chaffinch songs are quite low (2.6-25 Hz). As the frequency
resolution of the FNPS features is quite low at the mentioned positions, the repetition period
measure, being calculated by means of the above formula, serves as more precise indicator of
such repetition rates. Contrary to the detection algorithm for the Savi’s Warbler’s song, in this
procedure, false period detections constitute a critical factor. Usually, the phrases contained
in the song of Fringilla coelebs are quite short while containing few elements. Hence, only few
period estimates can be extracted from each phrase, which influences the overall detection
performance. For this reason, an intermediate processing step is performed, improving the
steadiness of the period estimates ρ̃(n).

Sequentially processing the above estimates, the following Algorithm 2 estimates an expected
period ρ̄n for each position n, using a median of 5 of the previous outputs. Now, the actual
period estimate is compared to the expected period. In the recordings of Chaffinch stanzas
examined for this work, the inter-phrase shifts of the period, although being quite notice-
able, do rarely reach twice of the element interspace. Thus, a period ρ̃(n) is examined, if
the estimate doubles the expected value. In this case, several local, “competing” maxima,
are extracted from the associated autocorrelation curve F norm

ACORR(·, n). Now, the competitor
having the greatest possibility of being related to the expected period is chosen. Here, the
local maximum’s position is compared to the positions of multiples of the expected period.
In this, a threshold is set to eliminate candidates being highly unrelated to the actual period
estimate ρ̃(n). Finally, comparing the autocorrelation energy of the best candidate and the
estimate, a decision is made whether to replace the estimate by the new candidate:

Actually, the above algorithm is applied in a backward-forward manner. This has proven
useful, because, as the end of the stanza-body is known, the above algorithm, reversely
analysing the extracted periods, is likely to start with estimated period values containing
valid information about actually present periodics. As, at this point, as there is no knowledge
about the actual start or existence of a Chaffinch’s stanza contained in the analysed stanza-
body candidate, the period correction routine is more robust when run from backwards. As
we want to correct both bisections and doublings of the period estimates ρ̃(n), the repeated
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Algorithm 2: Corrects pitch estimates by eventually reconsidering local autocorrelation

maxima. Here, temporal information is incorporated to achieve a more stable pitch

sequence.

Input: ρ̃((L− 1)− n), F norm
ACORR(·, n), for n ∈ {0, · · · , L− 1} ; /* inversed period

estimate */

Output: ρ(n), for n ∈ {0, · · · , L− 1}
∀0 ≤ n ≤ 5 : ρ(n) = ρ̃(n) ; /* copy first periods */

δ = 2;

n = 6;

while n ≤ L do
pitch corrected = 0;

ρ̄n = median{ρ̃(n− 6), · · · , ρ̃(n− 1)} ; /* reference period */

if ρ̃(n) > (2ρ̄n − δ) then /* check for jumps */
C = {ci | F norm

ACORR(ci, n) is local maximum in F norm
ACORR(·, n) ∧ ci ≥ 12} ;

forall ci ∈ C do ; /* check multiples of reference */

m(i) = arg min
m∈{1,··· ,5}

(|ρ̄n ·m− ci|) ; /* supposed harmonic’s number */

e(i) = Fnorm
ACORR(ρ̃n,n)−Fnorm

ACORR(ci,n)

Fnorm
ACORR(ρ̃n,n) ; /* associated energy */

end

D = {(ci, e(i)) | |ρ̄n ·m(i)− ci| < m(i) · δ} ; /* plausible harmonics */

if ( max
(c,e)∈D

(e)) > 0.3) then ; /* sufficient energy ? */

(cb, eb) = arg max
(c,e)∈D

(e) ; /* choose best competitor */

ρ(n) = cb;
end

if not pitch corrected then

ρ(n) = ρ̃(n) ; /* copy old pitch */

end

end

n+ +;
end
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Figure 5.21: Left: autocorrelation feature sequence (FABP) for a stanza-body candidate.
Right: period estimate in red and corrected period in dashed black. The outlying pitches at
frame 610 have been corrected.

application of the above algorithm, this time in a forward-directed manner, completes the
task.

Segmentation In order to generate a preliminary segmentation, the corrected period curve
ρ(n) is now searched for areas of volatile period sequences. Inside these areas, an unsteadiness
condition c1 has to be fulfilled, defined as

c1(n) :=

{
1 if

∑n+2
k=n |ρ(n+ 1)− ρ(n)| > 5

0 otherwise.
(5.20)

Thus, the segments are chosen to fill out the regions lying in between the above unsteady
areas. For each pair of such areas, a segment si ∈ S0 is defined as the intercostal region
having maximal length, being represented by the pair of starting and ending position (pi, qi).

S0 := {(p, q) | (∀p ≤ n ≤ q : c1(n) = 0)∧ (@(v, w) ∈ S, v ≤ p, q ≤ w : w− v > q− p)} (5.21)

For each segment si ∈ S0 a period histogram Hρ
si is generated, and the segment’s dominant

period ρ(si) is extracted.

Hρ
si(τ) := |{k | (ρ(k) = τ) ∧ (pi ≤ k ≤ qi)}|, for si = (pi, qi), (5.22)
ρ(si) := arg max

τ
(Hρ

si(τ)). (5.23)

Now, the segment set S0 is filtered from segments containing too many different periods, such
as for example, a slowly increasing period.

S1 :=

si ∈ S0

∣∣∣∣∣∣
∑ρ(si)+2

τ=ρ(si)−2H
ρ
si(τ)∑80

τ=12H
ρ
si(τ)

 > 0.85

 (5.24)

As there are some Chaffinch individuals featuring a continuous decrease of the element repe-
tition period during large parts of their song, a second criterion is used to expand the actual
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segment set. At first, for each frame, a measurement is made examining the maximal period
difference in a neighbourhood of 18.7 milliseconds. In this context, let

c2(n) := max
1≤j≤6

{ρ(n+ j)− ρ(n)}. (5.25)

Similar to the above procedure, a histogram of the c2(n) measure is then used to extract the
common range of short-time period deviations. Thereby, a narrow distribution of the deviation
values is required: 90 percent of the deviations have to remain in the near neighbourhood
of the most frequent deviation d(si). The latter is required to be zero or negative, thus
corresponding to a constant or increasing frequency. For δ ∈ {−5, · · · , 5} and the segment
si = (pi, qi) ∈ S0, the above measures are given by

Hc2
si (δ) := |{k | (pi ≤ k ≤ qi) ∧ (c2(k) = δ)}|, and (5.26)
d(si) := arg max

−5≤δ≤5
(Hc2

i (δ)). (5.27)

The segments satisfying the above conditions are added to the existing segment set.

S2 := S1 ∪

si ∈ S0 | (−2 ≤ d(si) ≤ 0) ∧

∑d(si)+1
δ=d(si)−1H

c2
si (δ)∑5

δ=−5H
c2
si (δ)

 > 0.9

 (5.28)

Reconsidering the strategy used for the primary segmentation, some areas may have been
splitted erratically, being influenced by errors in the period estimation. Therefore, in a final
segment postprocessing step, close (distance < 42 ms) consecutive segments featuring an
equal period are joined. Thereby, the resulting combined segment is required to comply
with the histogram requirement met by the elements of S1 (5.24). This time, no further
effort is made to handle the segments featuring continuous period variations, leaving those
segments untouched. In fact, the segments mentioned above are, by their nature, quite long.
For the following classification procedure, a certain degree of segmentation is assumed and
necessary. Thus, the previously mentioned segments are left disjointed. Hence, a cleaned,
final segmentation of the stanza-body candidate extract is derived and saved in S3. Let
the segments si ∈ S2 be numbered in an order ascending with the starting time pi, thus
∀si = (pi, qi) : pi < pi+1 holds. Then, candidates for joint segments are gathered as denoted
in Algorithm 3.

Classification Although some knowledge about the Chaffinch’s song has already been in-
corporated into the segmentation procedure, in particular during the specification of valid
periods and segment interspace durations, the following classification algorithm will use the
knowledge obtained from the study described in Section 2.4.2. Based on this knowledge, a
common stanza model is derived, describing a set of parameters to be measured in a valid
stanza. In particular, for the detected periodic segments, their number, duration, interspace
and period will be of importance. Furthermore, only 1-2 non-periodic gaps will be accepted.

Similar to the previous procedure, the approach described in the next paragraphs will explore
the segmented extract starting from the “known” and advancing towards the “unknown”, as
depicted in Figure 5.23. Thus, as the stanza tail is presumed to be detected, the associated
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Algorithm 3: Joins similar phrase candidates segments being close to each other.
Input: S2; /* segment set */
Output: S3 ; /* joined segment set */
S3 = {}; k = 0;
while k <

(
|S2| − 2

)
do

stmp = (pk, qk+1) ; /* temporary joined segment */
if pk − qk+1 < 14 then /* check segment interspace */

if

(∑ρ(stmp)+2

τ=ρ(stmp)−2
Hρ
stmp (τ)∑80

τ=12H
ρ
stmp (τ)

)
> 0.85 then

S3 := S3 ∪ (pk, qk+1) ; /* add joined segment */
k = k + 2;

else
S3 := S3 ∪ (pk, qk) ; /* add single segment */
k + +;

end
return S3
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Figure 5.22: Final phrase segmentation of a stanza-body candidate. Top: spectral features
of the excerpt. Bottom: dotted corrected period curve with boxes (blue line: start, red line:
end), depicting the extracted phrase candidates.
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Figure 5.23: Continued example from Figure 5.22: autocorrelation sharpness measure and
scored segments. The boxes’ heights depict the individual scores. A green line marks the
assumed start of the Chaffinch stanza.

stanza-body is processed in a reverse manner, starting at the flourish’s beginning. Let L +
1 = 900 denote the (hypothetical) starting position of the stanza-tail, measured in ACORR-
frames. This corresponds to a position of about 3.8 seconds, measured in relation to the
extracted excerpt. At first, it is assured that a periodic segment exists ending in the range
of 3.3 to 3.8 seconds (750-900). Given this case, the segments ending within 2 seconds before
the stanza-tail are examined in the reversed order of their occurrence. For each such segment
si = (pi, qi), a score value c3(si) is computed indicating the deviation from an anticipated
autocorrelation sum:

c3(si) :=

 qi∑
k=pi

FACSHARP(k)

− l̄ ·median{FACSHARP(j) | 0 ≤ j ≤ L− 1} (5.29)

Here, l̄ = fps
7.7 refers to a minimal segment length typically expected in Chaffinch songs. Note

that as the ACORR-frames are computed each WFT-frame, the framerate of the former
frames is identical to the WFT-fps value, leading to a minimum segment length of about an
eighth of a second. Segments featuring a negative corresponding score value, thus contain-
ing relatively negligible periods, are sorted out at this point. In Figure 5.23, the previous
segmentation is attached to its scores. Here, the noise-induced small segments in the stanza-
body candidate have negative score values. As the following algorithm will try to trace a
Chaffinch’s stanza by means of testing the above segments in a reverse order, a segment set
S4 is defined:

S4 := {si ∈ S3 | (qi > 2fps) ∧ (c3(si) > 0)}, (5.30)

for si = (pi, qi). Let the elements of the above set be numbered in a reverse way, thus, for two
segment ending positions pi, pj , qi > qj for i < j is required. While stepping from segment to
segment in reverse succession, the inter-segment distance is measured. If the former distance
exceeds a value of 50 milliseconds, a non-periodic segment is assumed in the stanza. As the
number of such segments is restricted to a single one, the analysis is stopped at the second
break exceeding the above length threshold. Now, the last segment being accepted by the
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algorithm is assumed to resemble the first stanza segment.

Algorithm 4: Traces the segments of the stanza-body candidate. Only a limited
number of severe gaps is allowed. The algorithm also estimates the stanza starting time.

Input: S4; /* Ordered segment set */
Output: ks ; /* index of assumed first stanza segment */
#badsegs = 0 ; /* counts non-periodic segments */
k = 0;
while k <

(
|S4| − 2

)
do

if pk − qk+1 <
fps
20 then /* check segment interspace */

k + +;
else if

(
pk − qk+1 <

fps
400

)
∧ (#badsegs < 1) then

#badsegs + + ; /* increase non-period counter */
k + +;

else break;
end
ks = k;
return ks

Thus, all stanza-body segments are expected to form the final segment set

S5 := {si ∈ S4 | i ≤ ks}. (5.31)

Now, a set of three criteria is used in order to perform a final classification of the prospected
stanza-body. The first criterion, measuring the amount of accepted, periodic sequences de-
tected in the excerpt determined by the above algorithm, is defined as follows:

c4(n) :=

{
1 if l > 0.75 · fps
0 otherwise,

(5.32)

where l =
|S5|−1∑
k=0

qk − pk, (pk, qk) ∈ S5. (5.33)

An accumulated value corresponding to 750 ms of periodic phrases is considered to be suffi-
cient. Now, the pitches contained in the selected segments are tested on their distribution.
Using the knowledge drawn from the study discussed in Chapter 2.4.2, the following rules are
applied: the set S5 has to contain segments featuring periodics below as well as above 10 Hz.

c5(n) :=

{
1, if∃si, sj ∈ S5 : (ρ(si) > 32),∧(ρ(sj) < 32)
0, otherwise.

(5.34)

A last criterion ensures a minimum diversity on the segment’s pitches.

c6(n) :=

{
1, if ∃si, sj ∈ S5 : |ρ(si)− ρ(sj)| > 12,
0, otherwise.

(5.35)



5.4. CHAFFINCH DETECTOR 95

Finally, the initial analysis excerpt corresponding to a stanza-tail candidate is classified as
Chaffinch stanza-body if and only if c4 ∧ c5 ∧ c6 = 1. A ranking based on the DTW-distance
of the flourish is applied on the excerpts classified as Chaffinch. Alternatively, the sum of the
segment scores

∑
si∈S5 c3(si) is used.

As for the precedent flourish-candidates, a SyncPlayer segmentation file is delivered as an
optional output of this algorithm. The resulting representation is displayed in Figure 5.24.
Using the Chaffinch flourish candidates of Figure 5.10, the algorithm has correctly detected
10 of 14 reasonable candidates. The remaining candidates were false positives. Furthermore,
an acoustic representation of the results is generated as described for the audio summarisation
algorithm (Sec.5.2.3).
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Figure 5.24: Continued example from the flourish detection section (Fig. 5.10, p. 73).
SyncPlayer representation of the final Chaffinch’s stanza detection results.

5.4.2 Autocorrelation vector clustering

In an early stage of the development of the above segmentation and detection routines, some
experiments were performed, exploring the feasibility of the application of speech recognition
paradigms on bird voices. Both forms of acoustic information propagation feature a highly
structured nature: in this section, the Chaffinch’s stanza will be considered as similar to a
sentence in human speech. Here, the equivalent of a word or syllable will be the phrase and
element, respectively, in birdsongs. Now, the experiment was made to model a Chaffinch’s
stanza by means of training an hidden Markov model (HMM), being widely used to capture
the (hierarchic) structure of human speech, using autocorrelation features of the birdsong
stanzas.
Thus, building models reflecting the periodic structure of the Chaffinch’s song, the intention
of keeping the aspired model invariant to the single individual’s proprietary element shapes,
as depicted in spectrograms, was followed. Although, due to the harsh inter-individual dif-
ferences in the stanza structures (see Fig. 2.6, p.19), a general stanza model could not be
derived (see following section), the segmentation methods used as a preprocessing step to the
model estimation, turned out to be highly performant. Moreover, the training procedure used
for the HMM, now incorporating similarities of several stanzas, provides an improvement on
the existing segmentation. Possessing the potential to improve the segmentation performed
in the previous chapter as well as in the future research, the approach followed in the stated
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experiment will be lined out in the following paragraphs. Basically, the training procedure of
a stanza model consists in the following steps:

1. Extract FABP features of several Chaffinch stanzas.

2. Reduce the feature dimension.

3. Perform a k-means clustering on the whole data set, reflecting the phrase structure of
the birdsong stanzas.

4. Train a hidden Markov model based on the segmentation induced by the above classi-
fication.

The autocorrelation features used to represent the Chaffinch stanzas are extracted using
spectral features similar to those utilised in the previous chapter. Analysing the 2-7 kHz
frequency band, 150 of the 40-bin features are extracted each second. The resulting FABP

features, containing a maximum lag of 59 samples, are extracted with the same sampling
rate, thus fpsac = 150. Now, as explained in Section 4.2.5, the autocorrelation curves are
downsampled by a factor of 5, reducing the number of autocorrelation coefficients to 12. The
size of the training data set is directly affected by the framerate. Thus, a high framerate,
resulting in about 400 data points per stanza, is particularly important for the success of the
whole procedure.
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Figure 5.25: Result of k-means clustering for two of three Chaffinch stanzas. Top: spectral
features. Mid: low-resolution FABP features. Bottom: clusters in colour, corresponding to
numbers (left to right): brown (4), blue (1), light blue (2), orange (3).

Having extracted the set of training data represented by several series of normalized autocor-
relation curves, the whole data set is clustered using the k-means algorithm. In general, the
goal of a clustering algorithm is to define a set of k clusters by means of partitioning a set of
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feature vectors. Thus, each feature vector in the data set is associated to a cluster. Thereby,
a distance measure, indicating the summed distance between the data vectors and the centres
of their associated clusters, is minimised. Considering the k-means implementation from the
NETLAB toolbox, implementing the techniques described in [Nab02], the squared Euclidean
distance of two autocorrelation curves is used: Let X := (x1, · · · , xM ) ∈ R12×M be the se-
quence constructed through the concatenation of all FABP sequences. Given a cluster centroid
cj , the distance measure d : R12 × R12 → R is defined as

d(xi, cj) :=
11∑
τ=0

(xi(τ)− cj(τ))2 (5.36)

For a fixed number of clusters, e.g. k = 5, the centroids ci0, i ∈ {0, · · · , k − 1} are initialized
using values randomly drawn from the set of the training data. By iteratively calculating
the new cluster assignments of the features and the cluster centroids, the following iteration
converges, minimising the overall cluster to cluster centroid distance. Note that the described
process might also converge to local minimums of the distance function. In our experiments,
the iteration was stopped after 100 cycles.

Algorithm 5: Basic k-means clustering
Input: FABP sequence X
Output: Clusters CiN−1

for i=0 to k-1 do1

choose r ∈ {0, · · · ,M − 1}12 randomly;2

ci0 =
(
xr(0)(0), · · · , xr(11)(11)

)
; /* initialize centroids */3

end4

for n=0 to N-1 do5

for i=0 to k-1 do6

Cin =

{
j | i = arg min

i∈{0,··· ,k−1}
(d(xj , cin))

}
; /* actualize clusters */

7

end8

for i=0 to k-1 do9

cin+1 =
∑
i∈Cin

Xi

||
∑
i∈Cin

Xi|| ; /* compute new centroids */
10

end11

end12

Note that the sum used to calculate the new cluster centroids in line 10 of Algorithm 5 denotes
the component wise sum of the respective vectors, resulting in the cumulative vector. Fixing
the number of clusters to little more than the expected number of phrases turns out to be
suitable for data sets containing the stanzas of a single individual. When operating with data
from multiple individuals, the number of clusters required, unfortunately, seems to increase
linearly with to the number of individuals.
A hidden Markov model is now initialized and trained using the data and labels from the
k-means classificator. For the experiments performed in this work, the implementations of
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the “Hidden Markov Model (HMM) Toolbox”, written by Kevin Murphy [Mur], were used.
Being fairly often used to model the transitions of phonemes, syllables and other sequential
entities in human speech (as exemplified in [Rab89]), these models appear well-suited to
represent the phrase structure inherent to chaffinch songs. The bottom part of Figure 5.25,
depicting automatically assigned cluster numbers, may be interpreted as a state sequence of
a process, modelling a singing Chaffinch: at first, there is mostly non-periodic noise (state
4). Then, the Chaffinch sings a first phrase (state 1), which is followed by the singing of
two further phrases (state 2 and 3), ending with a rather non-periodic flourish (again state
4). Using the language of regular expressions, both of the depicted stanzas resemble the
form 4∗ 1+ 2+ 3+ 4∗. This example could be easily refined by adding further states, but,
here, the generalisation caused by the small set of states turns out to be quite helpful. In
particular, state number 4 represents a whole class of aperiodic signals, including the motif
of the Chaffinch’s flourish. Although differing in their spectral representations, the FABP

features of aperiodic signals are quite similar to each other. Now, the sequence of the “bird’s
states” is modelled as a statistic process, representing the bird’s state as discrete random
variable q : N → {1, · · · , 4}, which may be evaluated for each ACORR-frame. On the left
side of Figure 5.26, this “stanza process” is modelled in a simplified manner. Thus, we may
ask for the probability of the bird singing phrase number 3 after singing the sequence 1 1 1 2
2. This is a typical question to be solved by a model of a statistical process. For the special
case of a Markov model, the mentioned probability only depends on the previous process
state. Considering the given example, this is “phrase 2”. Thus, for a Markov model, given
the example state set S = {si | 1 ≤ i ≤ 4},

P (q(t) = si | q(t− 1) = sk, q(t− 2) = sj , · · · ) = P (q(t) = si | q(t− 1) = sk) (5.37)

holds. As, assuming a Markov model, the absolute time position does not influence the above
transition, a matrix S, containing the probabilities of all possible state transitions, can be
defined by

Si,j := P (q(t) = sj | q(t− 1) = si) , for 1 ≤ i, j ≤ 4. (5.38)
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Figure 5.26: Two HMM’s modelling a phrase sequence. Left: simple circular model. Right:
implemented model with low possibilities for off-circle state transitions. Instead of the FABP

features used for the actual computations, spectral features are used for the thumbnails.

In Figure 5.26, some of these transition probabilities are notated on top of the state-transistions.
The right HMM depicts the full range of possible state transitions. The matrix S is stochas-
tic, thus fulfilling the conditions Si,j ≥ 0 and

∑4
j=1 Si,j = 1 for all i, j ∈ {1, · · · 4}. In order
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to calculate the probability of a full sequence, the additional knowledge on a starting distri-
bution Ri := P (q(0) = si) is needed. Now, assuming the individual state transitions to be
independent, the probability of a phrase sequence W = (w0, · · · , wk), being sung by the bird,
is calculated as follows:

P (W ) = P (q(0) = w0, · · · , q(k) = wk) = Rw0

k∏
n=1

Swn−1,wn (5.39)

Unfortunately, the bird’s singing state sequence is not known given the acoustic recordings
analysed in this work. Rather, we are limited to only knowing the acoustic output of the
bird. Actually, we are dealing with the periodicity features of it, being derived from noisy
and distorted recordings. In fact, we are assuming an invisible, hidden model, while ob-
serving the acoustic features. Concerning the hidden Markov model, each state si has an
associated function P (o(t) | q(t) = si), measuring the probability of a distinct observation
o(t) being made with the model residing in the respective state. As it is the case in this sec-
tion, the observations are represented by the single autocorrelation curves FABP(·, t). Thus,
the observed autocorrelation curves are connected to the assumed singing states, using the
indirection of the above probability function. Now, the probability of a FABP sequence, for
V = (o(1), · · · , o(T )), given our envisaged model, can be calculated by means of summation
over the probabilities of all rmax = |S|T possible hidden state transition sequences W r having
length T ,

P (V ) =
rmax∑
r=1

P (V |W r)P (W r). (5.40)

This is efficiently achieved using the Forward Algorithm, which has the complexity O(|S|2T ),
and is explained in detail in [DHS00]. As for the probability of a phrase sequence (equation
5.39), the probability of a sequence of observations is derived by calculating the product of
the associated probabilities P (o(t) | wr(t)).
For the models derived in this work, the observation-state probabilities mentioned above
are defined using multivariate Gaussian density distributions. Given the clusters CiN−1, i ∈
{1, · · · 4}, derived in the previous k-means algorithm, such a distribution is initially defined
by calculating the mean vector µi = mean(CiN−1) ∈ R12, as well as the covariance matrix
Σi ∈ R12×12, for each of the four clusters. Now, the multivariate Gaussian density function

pi(o(t)) :=
1

(2π)d/2det(Σi)1/2
· exp

[
−1

2
(o(t)− µi)>Σ−1

i (o(t)− µi)
]
, (5.41)

approximating P (o(t) | si), is associated to each state si. Here, d = 12 expresses the fea-
ture dimension, and Σ−1

i refers to the inverse of the respective covariance matrix. Applying
this model on the FABP sequences, representing the birdsong stanzas, the k-means classifi-
cation result should be reflected by the respective probability outputs of the hidden states’
distributions.

Approaching the HMM training process, the state transition matrix S and the initial dis-
tribution R are initialised using random values. After ensuring them to fulfil the stochastic
conditions mentioned above, the variables R and S, as well as the parametrisations of the
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Gaussian models Σi, µi, are bundled to form the HMM’s parameter set θ. Maximizing the
HMM’s probability for the given data by modification of θ, the iterative Baum-Welch algo-
rithm is used to estimate the values in S and R, regarding the available stanza sequences as
training data. Furthermore, the algorithm is allowed to modify the parameters of the Gaus-
sian models, adapting them for more uniform state transitions. Thus, the HMM is trained
to provide high likelihoods concerning the stanzas’ features given as example observation se-
quences. Thereby, the knowledge on the individual stanza instantiations is used to build a
more general model.
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Figure 5.27: Left column: HMM configuration resulting from the Baum-Welch algorithm,
compared to the initial conditions. Dark colours in the above (logarithmically scaled) matrices
depict high transition probabilities. Right column: spectral features, k-means clusters and
most likely state sequence of a Chaffinch’s stanza in colour, corresponding to numbers (left
to right): light blue (2), orange (3), blue (1), brown (4).

In the left column of Figure 5.27, the state transition matrix S and prior R, are depicted
both before and after the training process. Continuing the example given in Figure 5.25, the
FABP autocorrelation sequences of three Chaffinch stanzas were used as data for the training,
supporting each state’s Gaussian model (Σi, µi) with about 300 data points. Considering
the final state transition probabilities, the diagonal elements of S, being associated with
intra-state transitions, reflect the stationary form of the phrases’ autocorrelation features.
Furthermore, considering the bottom image, displaying a supposed hidden state sequence
fitting the actual features, the lighter coloured fields of S reveal their meaning: in every row,
there is a second coloured maximum, pointing to the column of the state which is likely to be
followed by the state associated to the row. For example, state (row) 3 is likely to be followed
by state one. This can be verified by the state sequence. Here, state 2 represents the more or
less non-periodic sequences, framing the actual stanza. Plotted in the center row of Figure
5.27, the final starting probability R reflects the fact of two of the three stanza examples
starting at state 2, while a single stanza is estimated to start at state 3.
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Actually, deriving the most probable hidden state sequence, as shown in the previous example,
is a non-trivial task, as, at this point, there are several means of defining optimality. Here,
the Viterbi algorithm, using dynamic programming techniques, successes in extracting the
path displayed in Figure 5.27. For further explanation on this and other standard algorithms
used with HMM’s, we refer to [Rab89].

As exemplified in the previously delineated experiment, the application of clustering methods
such as k-means and the time-encoding hidden Markov model on the robust periodicity fea-
tures, derived in this work, state an promising tool for the segmentation of birdsongs featuring
a periodic structure. The repetition of almost identical stanzas, as performed by Chaffinch
individuals, is an essential prerequisite to the introduced approach, although a more general
model, describing several stanza types, would be realisable.

Initially, the above HMM training procedure was designed as part of a Chaffinch detector: A
composite HMM was build, joining the previous stanza model and a “residual model”. The
latter model was trained using a wide range of audio sequences containing typical background
noise, also featuring various birdcalls different from the Chaffinch’s song. In the experiments
performed with a variety of such composite models, it turned out that the individuals’ stanza
structures did not permit the generalisation needed for a generic Chaffinch detector. However,
the identification of a single individual’s stanzas worked quite well. Here, the data sets used
for training and tests were disjunct.
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Chapter 6

Evaluation

6.1 Detection of Savi’s Warbler’s song

The Savi’s Warbler detector, being described in Section 5.3.1, has been evaluated on a data set
containing 19 hours of 4-channel monitoring recordings from Lake Parstein in Brandenburg,
Germany as part of a research and development project founded by BfN and BMU. As part
of this project, having the founding identifier 806 82 060 - K2, several publications dealing
with the detection of Savi’s Warbler were released or are in preparation ([CIB07] [BWC08],
[ASA08]). A microphone array, autonomously recording the sounds of the protected area,
has been set up by our cooperative colleagues Karl Frommolt and Klaus-Henry Tauchert at
the Animal Sound Archive, Humboldt University Berlin. The sensors were installed on a
boat anchored in the center of the mentioned Lake, where they were left alone for most of
the operation time. As this project was conducted from April to June, the recordings, being
timed to take place during the sunrise and sunset periods, contain a wide range of different
birdsongs as well as a mixture of diverse background noises. Envisaging the evaluation of a
robust detector, the set has been chosen to uniformly cover the whole range of background
noise met at the particular monitoring site. Furthermore, the signal excerpts were divided
into 4 background noise classes, separating the signals featuring heavy wind or rain noise
from those with many birdsongs as well as quiet recordings from particularly clear Warbler
recordings.

Most of the monitoring excerpts used in the following study have a total length of about 15
minutes, although the length of a few examples deviates in a range of about 5 minutes. For
each of the excerpts, occurrences of the Savi’s Warbler’s song were manually annotated. The
annotation of such a large data set turns out be quite time consuming: the complete 19 hours
were listened to by means of a four-channel (2 times stereo) high fidelity equipment. Here,
a slight equalising of the audio signal was applied, suppressing the low frequencies while sus-
taining the frequency range containing the Warbler’s song. Furthermore, the overall speaker
volume was adapted to the signal’s amplitude, thus amplifying quiet excerpts. Addition-
ally, a mixed-down real-time spectrogram of the actual signal was displayed and examined
by the human annotator. Using an annotation tool specially developed for this application,
the perceived Warbler songs were journalised, listing the occupied time interval as well as a
perceptiveness estimate. The estimate was determined by the listener, and rated on a scale
of 5 classes. In this, the first class corresponds to a “barely perceivable” song, followed by the
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conditions usually met, which include simultaneous birdsongs and wind noise, being assigned
class values of 2 or 3. The further classes correspond to superiorly perceivable songs.
In this section, the results of the given detection algorithm are compared to the annotations
performed by the human listener. Of course, several conditions affecting the direct compari-
son of the two annotation procedures have to be noted. First, the discovery of a song made
by the observer is not logged instantaneously. A latency of about 1 up to 3 seconds, partly
depending on the loudness of the song in relation to the surrounding noise, has to be con-
sidered. Besides this, the reaction time of the observer, being subject to various influences,
has not been precisely estimated. For the detection algorithm, the actual implementation
discards song candidates being shorter than three seconds. However, the usual timing accu-
racy of the algorithm’s output is estimated to a second. Thus, for the annotations of short,
call-like Warbler sounds, there is a low probability for the automatic and manual annotation
to match each other. Consequently, annotations referring to excerpts shorter than 5 seconds
are discarded from the evaluation. Furthermore, a tolerance area of 4 seconds was added at
the beginning and end of each manually annotated segment. Actually, as shown in Table 6.1,
the influence of the mentioned short excerpts is quite low. In fact, considering the manual
annotations, the discarded excerpts constitute a fraction of 5 percent of the overall singing
time.

Category Complete data Friendly Manybirds Quiet RainWind
Data 19h 1min. 4h 15min. 4h 29min. 5h 27min. 4h 30min.

Manual 12h 28min. 4h 9min. 4h 23min. 2h 29min. 1h 26min.
Manual5+ 11h 52min. 4h 8min. 4h 17min. 2h 13min. 1h 13min.
% Det. OK 92.95% 99.59% 97.28% 79.06% 80.55%

% Det. ? 1.22% 0.71% 1.12% 1.42% 1.60%

Table 6.1: Summary of the Savi’s Warbler detector’s evaluation, by signal categories. The
first two rows label the absolute, “Manually” annotated Warbler singing time and the time
associated to stanzas more than 5 seconds long (“Manual5+”). “Det. OK” contains the
recall values: the percentage of (5+)-song time annotated manually also being found by the
detector. “Det. ?” measures the percentage of possibly falsely detected time spans.

As depicted in the above comprehensive table, the Warbler’s song is widely present (66% of
the whole timespan) in the data set used for this study. Thus, considering the algorithmic
detection, false positives are more “difficult to achieve”. In fact, about 40 percent of the
segments counted in the “Det. ?”-row of this table actually represent Savi’s Warbler songs
which the human listener failed to identify. Considering the raw statistics, not incorporating
the short call-segments and tolerance area mentioned above, the proposed algorithm still
detects 88.4% of the manually annotated singing time. Although an evaluation of the number
of stanzas being actually detected would be appreciable, the task of annotating such excerpts,
while dealing with multiple overlapping Warbler songs, turns out to be challenging for the
human observer. For the algorithmic aspect, this task, requiring the integration of acoustic
source seperation techniques, is left for future work.

6.1.1 Signal quality categories

In the following section, the signal categories mentioned above will be analysed in detail.
The influences of each signal type on the detection rate will be depicted, accompanied by a
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spectrogram and the frequency distributions of representative excerpts. As the signal levels
were not altered in between the individual recordings, an absolute volume can be measured
for each frequency coefficient. Note, that all of the following examples contain a more or less
obvious Savi’s Warblers song. Consequently, the frequency distributions on the right of the
spectrograms have a common energy peak close to 4 kHz.
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Figure 6.1: Distribution of the signal classes with regard to the perceptiveness scores. The
Quiet and RainWind classes share a common, low score for different reasons.

In Figure 6.1, the manually annotated perceptiveness score is individually evaluated for each
signal class. For the detection statistics of the individual monitoring excerpts, ordered by
signal class, see page 108.

Friendly There are a few occasions when the Savi’s Warbler’s song can be listened to with
only little influence of any interferences. Such outstanding recordings are usually performed
during the day or a few hours after sunset. At these times, many of the other species are
no longer active. The Warbler is usually found singing in the reed near to the microphones,
and very few wind or rain is heard if at all. As Figure 6.1 shows, most of the annotated calls
are easy to identify for the human annotator. Likewise, the detection rate of the algorithmic
detector reaches the best performance. The example given in Figure 6.2 shows a song at -23
dB, given the score 4.
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Figure 6.2: Left: spectrogram of a recording featuring a near Savi’s Warbler’s song. Right:
mean absolute energy distribution. Recorded on 04.26.2007, at 23:14.
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Manybirds Recorded at the times of major interest for bird watchers, namely dusk and
dawn, these recordings contain a vast number of overlapping birdsongs and calls. In order
to drown the songs of their competitors, the individuals usually elevate the intensity of their
singing. Thus, the signal-to noise ratio, concerning the song of a Savi’s Warbler, is ruled by
the relative distance of the Warbler, followed by the intensity of its song. As the recordings
of this category are likely to contain the songs of several Warblers singing simultaneously,
the distribution of these sounds on the four recorded channels also constitutes an important
influence. Although, for the human annotator, the song of the Savi’s Warbler is easy to
recognise, the overlapping birdsongs represent a challenge to the automatic annotator. With
the used F−nois

NPS features being highly robust and invariant to the aperiodic mixture of the
surrounding birdsongs, the Warbler’s period is still well represented. Moreover, the remaining
periodics of the birdsong background come with a slow repetition frequency, thus being easy
to distinguish from the targeted 50 Hz frequency. The song depicted in Figure 6.3 was given
the score 2.
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Figure 6.3: Left: spectrogram of a “full” recording. Right: mean absolute energy distribution.
Recorded on 05.07.2007, at 4:59.

Quiet The quiet recordings, although featuring a low absolute noise level, are characterized
by a relatively shy, if any singing behaviour of the avian inhabitants at Lake Parstein. As
some occasional noises, mostly caused by wind, remote airplanes or trains dominate the
signal’s volume, the signal-to noise ratio is rather low for a distant Savi’s Warbler’s song.
Given the steady stream of hiss which is perceptible at higher amplification levels, the long
and constant song of a distant bird is easy to miss. Although the applied features are likely
to yield clear periodicity parameters even from these songs, the autocorrelation sharpness
threshold criterion (see equation 5.11), designed to discard questionable candidates, prohibits
the detection of such vague events. This situation, exemplified in Figure 6.4, is mostly found
in recordings performed at late night. The warbler song depicted here arrives with a decreased
volume of -61 dB, thus having 38 dB less energy than the example for the “Friendly” class.
A score value of 1 was given to the actual song.

RainWind When recording under bad weather conditions, the signal-to noise ratio of the
target signal is likely to be low. Especially when the microphones are subject to serious air
turbulences, caused by heavy wind, the recorded data is heavily distorted up to a complete
loss of any relevant signal. As the actual version of the detection algorithm is not capable of
combining the separated song excerpts, many candidates do not reach the sufficient length for
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Figure 6.4: Left: spectrogram of a quiet recording. Right: mean absolute energy distribution.
Recorded on 05.03.2007, at 23:14. Note the overall -20 dB drop in energy.

a positive classification. Figure 6.5 displays such a fragmented recording. “Rainy” recordings
are padded with a constant noise floor caused by the rain. This happens to the extend of
some bird voices being completely masked by the sound of raindrops. In the special case
of the recordings considered for this evaluation, a plastic canvas, although protecting the
microphones from the water, tends to amplify the recorded rain noise. With the masking
caused by heavy gusts of wind, this effect is mainly held responsible for the degraded detection
performance. Moreover, given a loud ambience, most of the birds living around the monitoring
area, including the Savi’s Warbler, tend to decrease the overall rate of their songs.
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Figure 6.5: Left: spectrogram and of a rainy (top) and windy (bottom) recording. Right:
mean absolute energy distribution. Note the signal drop-outs probably caused by an overload
of the A-D converter.
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Figure 6.6: Recognition results for individual monitoring recordings. Blue bars represent
the manually annotated Savi’s Warblers singing time. Green bars count the seconds being
annotated by both the manual and automatic detector. Brown bars display the remaining
automatic annotations.
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6.1.2 Performance

The Savi’s Warbler detector was implemented using the MATLAB R© scripting language,
following the goal to design an off-line detection routine while benefiting from the numerous
tools available in this framework. A typical 4-channel, 48000Hz, 16bit PCM audio file of
15 minutes length is analysed in about 16 minutes, measured on an AMD AthlonXP 2800+
with 1024 MB RAM. Considering modern computer hardware, the analysis can actually be
performed in less than the time recorded. Here, the direct application of the second analysis
step on the whole test signal is considered, omitting the energy-based segment preselection
routine. As the recordings are split into several analysis excerpts to be processed separately,
the actual processing time grows linearly with the length of the input signal.
In this main part of the analysis, most (95%) of the CPU time is used for the F−nois

NPS feature
extraction step. Here, the initial WFT used for the extraction of high-resolution spectral
features consumes 70% of the overall time. A filter bank approach might be pursued instead
to achieve a more efficient extraction of frequency-band limited features. Secondly, the cal-
culation of the short-time autocorrelations and the subsequent fast Fourier transforms take
a dominant (20%) part. Adjusting the tradeoff between computational costs and annotation
precision, the ACORR-frame rate fpsac constitutes an ideal parameter to adapt the algo-
rithm’s performance. Although a smaller number of ACORR-frames decreases the number
of features finally gathered in the time binning step, the autocorrelation costs, as well as
the costs of the subsequent steps decrease in direct proportion to this frame rate. Consid-
ering this as an adjustment of the algorithm’s robustness up to temporal occlusions of the
Warbler’s song, two similar approaches can be applied on the number of the subbands used
for the feature extraction as well as the number of microphones and channels. While the
former of these parameters enables the control of the algorithms frequency selectivity, a large
number of channels increases the chance of targeted birds being directly focused by a micro-
phone. Furthermore, as discussed in Section 4.2.6, the computation of the F−nois

NPS features
may be sped up by circumventing the computation of autocorrelation measures. In this case,
a replacement has to be found for the autocorrelation sharpness measure.
Considering the preselection routine, the actual implementation uses a filtering approach to
extract the energy curve of a signal. Thus, for the above machine and 15 minute-records, the
preselection routine is completed in less than 2 minutes, including the time used for reading
the data from hard disc. As the coverage of the following analysis is determined by the actual
signal, no prediction will be made on the subsequent computational costs. However, the above
numbers regarding an F−nois

NPS analysis of the complete signal determine an upper limit of these
costs.

6.2 Detecting the Chaffinch’s song

The generic Chaffinch stanza detector, as described in Sections 5.2.2 and 5.4.1, like the pre-
vious detector, has been implemented in the MATLAB R© scripting language. Both of the
mentioned detectors are part of a bioacoustic signal processing tool kit, providing an easy-to-
use interface to the developed feature extractors.
The following Table 6.2 contains some evaluation results for two disjunct data sets. The first
set was compiled from monitoring recordings containing some Chaffinch calls. The recordings
were performed at 3 different places, featuring different noise conditions. The second set was
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gathered from a greater number of monitoring recordings, containing a diverse set of bird
sounds and noise. No Chaffinch stanzas were found when manually inspecting this set of
recordings.

Set Compl. data #Stanzas #Flourish cand. #Det. stanzas #False det.
1 19.7min. 91 226 44 15
2 59.5min. 0 669 0 30

Table 6.2: Evaluation results for the Chaffinch detector.

As depicted in this table, the overall detection rate nearly reaches 50%. Moreover, there are
lots of false detections, amounting to 25% of all detections for the first test set. Still, the final
detection stage filters out a lot of false candidates. This is clearly visible when taking into
account that a nearly constant amount of about 220 candidates is proposed by the flourish
detection stage for each 20 minutes. Considering the ratio of candidates and false positives in
both test sets, only 5.29% of all false candidates were also falsely identified as Chaffinches in
the model-comparison step. As there are way too much flourish candidates being extracted
from the second test set, improving the candidate extraction routine promises to significantly
enhance the precision of the proposed algorithm.
With this perspective in mind, a further evaluation was performed on the first of the data sets
covered by the above table: the flourish candidates were precisely determined by manual anno-
tation. Afterwards, the model-based Chaffinch detector was applied on the chosen Chaffinch
songs in order to determine the false-negative rate of this second step of the Chaffinch de-
tector. Unfortunately, only 41 (45%) of the 91 calls were correctly identified. The loss of
classification precision can be explained by the smaller number of flourish candidates. For
the case of several flourish candidates being associated to the same stanza, the model is fitted
at slightly varying positions within this stanza. This allows for a more variable application
of the model, resulting in an increase of detections.
As the above results imply, the Chaffinch detector itself has not grown past an experimental
stadium: as the inter-individual diversity of sung stanzas’ is quite large even for this species,
the generalised model used to detect the stanza-body comes with a high rate of false positives.
Most of the false detections are represented by a mixture calls being performed simultaneously
by a couple of birds. As these mixtures often contain a multiplicity of periodic signals, the
generic Chaffinch model is likely to fit some of them. This is because the model of the
Chaffinch’s stanza structure is quite general, permitting a large set of phrase combinations.
The individual phrases of different birds may now occur in a combination fitting the model of a
Chaffinch stanza. There are also a couple of other birds, like the Willow Warbler (Phylloscopus
trochilus) or the Blue Tit (Cyanistes caeruleus), which feature a similar stanza structure.
Their stanzas are depicted in Figure 6.7. However, many people also tend to mistake the
singing Willow Warbler for a slowly singing Chaffinch.
Moreover, the preselection stage, searching for the Chaffinch’s flourish, adds to this phe-
nomenon. As the number of flourish candidates to be extracted from a certain time span
is fixed, a high number of false candidates is generated in the absence of Chaffinch songs.
Given a few Chaffinch songs, the false detections may be sorted out by utilisation of the
DTW-ranking. Here, the correct matches are likely to achieve score values superior to the
scores of false candidates.
In order to evaluate further weak points of the algorithm to be improved in future work, the
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Figure 6.7: Spectrograms from stanzas of a Chaffinch (a), Willow Warbler (b) and Blue Tit
(c). The latter birds’ songs are often falsely detected as Chaffinch stanzas by the Chaffinch
detector.

detector’s decisions were logged in the second, semi-automatic part of the study. Here, four
criteria responsible for the acceptance of a Chaffinch candidate were defined according to the
classification criteria introduced in Section 5.4.1.

• High energy near flourish: the quick check, as depicted in Figure 5.20, has to return a
positive result when performed on the energy progression of the stanza candidate.

• Final periodic segment : a periodic segment, constituting a phrase candidate, has to be
detected near the flourish candidate (see Algorithm 4).

• Stanza length: Equation 5.32 requires a minimum time span being covered by phrase
candidates with sufficient autocorrelation sharpness values.

• Period diversity : as defined in Equation 5.34, the phrase candidates have to include
element repetition periods below and above 10 Hz. According to Equation 5.35, a
minimum period range has to be maintained in the remaining candidates.
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Energy Final seg. Length Diversity
9% 0% 27% 12%

Table 6.3: Chaffinch detector: detection criteria and their responsibility for discarding actu-
ally correct Chaffinch stanzas.

As depicted in Table 6.3, the segment extraction and stanza tracing routines are to be held
responsible for the majority of false negatives. Here, improvements could be made especially
in the pitch correction and segment scoring steps. As a working pitch correction routine
is fundamental for the following segment extraction, a more adaptive routine may lead to
extensive improvements in detection precision. When calculating the segments’ individual
scores in Equation 5.29, the median of the autocorrelation sharpness of the full candidate
excerpt is a more or less weak reference score. Here, a more global reference could increase
the reliability of the filtering of weak segments previous to the segment combination step.



Chapter 7

Conclusions and Future Work

Focussing on the computational interpretation of the vast data sets being accumulated in
monitoring sessions, some basic signal features and detection tools are developed in the thesis
on hand. Here, special attention is given to the particular requirements of the discussed
realistic monitoring scenario, including low signal-to noise ratios and unpredictable signal
interferences. As a main contribution of this work, two sets of robust features and their
extraction methods are introduced. All of the features are designed to measure acoustic
parameters of significance for birdsongs, but each feature set turns out to be suitable for a
particular group of applications. The first feature set, namely the spectral features, encodes a
rough sketch of the spectral parameters of a monitoring signal. Besides serving as a basis for
some fast candidate extraction routines, they form the representations used in the proposed
template matching routines. The second feature set robustly extracts the parameters of
periodic repetitions of elements within the spectrogram. For some species which perform
their songs using a particular, species-specific repetition frequency, robust detectors are build
using the periodicity features. The following paragraphs subsume the mentioned feature sets,
their applications and potential.

The spectral features facilitate the application of template matching methods. Here,
a Dynamic Time Warping approach is used to implement an audio summarisation routine,
which may be used to condense the material to be presented to a human investigator or
an algorithmic classifier. For this summarisation task, no prior knowledge on the avian
inhabitants of the monitoring area is needed.

Contrarily, the detection of a particular species seems to require more individual feature
parametrisations and classification routines. So, the template matching approach used in the
Chaffinch detector, searching for a typical flourish, is based on a mannerism of this particular
species. Considering the low-level spectral features, including the energy and spectral flatness
measures, the provided information is satisfactory for a preselection of candidates, enabling
a speedup of the whole detection procedure.

The periodicity features, measuring parameters of periodic element repetitions, turn out
to be suitable when searching for birdsongs featuring periodic sequences. When applied in
such a scenario, the periodicity features show a superior robustness up to the usual background
noise found in field recordings: as birds often vocalise a very precisely timed series of elements,

113
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their songs can be easily distinguished from noise using these features. In the Savi’s Warbler
detector, the denoised novelty autocorrelation (F−nois

NPS ) features are used to robustly detect the
typical element repetition frequency used by this species. The mentioned features constitute
the most robust features developed in this work and the average detection rate of the above
detector is reasonably high (92.95%). The FABP and F−nois

NPS features may be easily adapted
to serve the description of other species’ sounds, including crickets and frogs. Lowering the
frequency resolution of the underlying spectral features, an application to the detection of
birds like the Great Tit or the Eurasian Bittern becomes feasible. For the latter bird, a similar
approach is described by Bardeli [Bar08].

Actually, the identification and extraction of parameters being representative for a distinct
species generally is a great challenge. In the second stage of the Chaffinch detector, a complex
structure extraction algorithm is used. Here the phrase structure is considered to represent
the species’ peculiarity. Adaptive band autocorrelation and autocorrelation sharpness features
were used to robustly extract the parameters of the single phrases. Unfortunately, the generic
nature of the model, as our evaluation shows, appears to lead to a high number of false positive
matches.

A more general structure extraction algorithm was presented, using k-means clustering tech-
niques. Moreover, periodicity based hidden Markov models were introduced, using the
Chaffinch’s stanza as an example. In future work, this approach may lead to more elabo-
rate models for several bird species. Another step towards generic classification of birdsongs
has been made by introducing the generic periodic features Fabstractp. Here, Neuronal Nets,
Support Vector Machines or HMM’s may be trained in an unsupervised manner. The latter
approach may be applied to a large set of animals that emit periodic acoustic signals. Hence,
a variety of detectors may be derived from the data sets existing in today’s animal sound
archives.

As it has been stated in the introductory sections, some of the previously recapitulated ap-
proaches remain in an experimental stadium. Considering the juvenile status of the research
branch concerned in computational bioacoustics, this is not astonishing. Here, the goal was
to investigate basic methods facilitating several topic-related tasks. Although some of these
methods, being generated as by-products of the detection algorithms, have not been evalu-
ated on a big scale, their experimental results encourage further research on the underlying
concepts.



Bibliography

[ADM96] S. E. Anderson, A. S. Dave, and D. Margoliash. Template-based automatic
recognition of birdsong syllables from continuous recordings. Acoustical Society
of America Journal, 100:1209–1219, August 1996.

[ASA08] SFA ASA, EAA. Acoustics’08. Paris, 2008.

[AUD] AUDACITY. Free audio editor and recorder. Website. http://audacity.
sourceforge.net/.

[Bar08] Rolf Bardeli. Algorithmic Analysis of Complex Audio Scenes. PhD thesis, Uni-
versity of Bonn, 2008.

[BH82] Hans-Heiner Bergmann and Hans-Wolfgang Helb. Stimmen der Vögel Europas.
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die angegebenen Hilfsmittel benutzt, sowie Zitate kenntlich gemacht habe.

Bonn, den

Autor


	Introduction
	Related work
	Thesis overview

	Acoustic monitoring of bird activities
	Unsupervised monitoring
	Detection goals
	The acoustic nature and representation of birdsongs
	Chaffinch (Fringilla coelebs, Buchfink)
	Song structure
	Stanza segmentation study

	Savi's Warbler (Locustella luscinioides, Rohrschwirl)

	Audio signal processing background
	Notation and mathematical symbols
	Audio signals
	Sampling
	Quantisation

	Spectral analysis and filters
	The Fourier transform
	Digital filters
	WFT and spectrogram


	Acoustical features
	Frequency bands and related features
	Spectral features

	Periodicity features
	Novelty curves
	Autocorrelation
	Autocorrelation sharpness
	Abp-features
	Reducing the dimension of autocorrelation data
	Fourier transformed autocorrelation curves
	Cancellation of periodic noise in FNPS features


	Signal classification and birdsong recognition
	Overview for Chaffinch and Savi's Warbler detectors
	Directing the search via segment preselection
	Energy and spectral flatness features
	Detection of the canonic Chaffinch's flourish
	Exploiting stanza repetition (Audio Summarisation)

	Song detection using periodicity features
	Savi's Warbler: Characteristic period recognition
	Classification based on element frequency

	Chaffinch detector
	Model evaluation based on dominant periods
	Autocorrelation vector clustering


	Evaluation
	Detection of Savi's Warbler's song
	Signal quality categories
	Performance

	Detecting the Chaffinch's song

	Conclusions and Future Work
	Bibliography

